【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;
(2) 已知函数f(x)=x2+2mx+3m+4.
① 若函数f(x)有且仅有一个零点,求实数m的值;
若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.
【答案】(1)(-4,0).(2)(-5,-1).
【解析】试题分析:(1)利用函数图像研究函数零点:先作出函数g(x)=|4x-x2|图像,再研究直线y=-a与它有四个交点的条件,即得实数a的取值范围;(2)①由二次函数得Δ=0,解得实数m的值;②由实根分布充要条件得 ,解不等式组可得实数m的取值范围.
试题解析:解: (1) 令f(x)=0,得|4x-x2|+a=0,
即|4x-x2|=-a.
令g(x)=|4x-x2|,h(x)=-a.作出g(x),h(x)的图象.
由图象可知,当0<-a<4,即-4<a<0时,g(x)与h(x)的图象有4个交点,即f(x)有4个零点.故a的取值范围是(-4,0).
(2) ① f(x)=x2+2mx+3m+4有且仅有一个零点f(x)=0有两个相等实根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,
∴ m=4或m=-1.
② 由题意,知
即
∴ -5<m<-1.
∴ m的取值范围是(-5,-1).
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的右焦点为,且椭圆上一点到其两焦点,的距离之和为.
(1)求椭圆的标准方程;
(2)设直线:()与椭圆交于不同两点,,且,若点满足,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.
(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线(为参数),在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.
(1)求曲线与的交点的直角坐标;
(2)设点, 分别为曲线上的动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(1)求的解析式及单调递减区间;
(2)是否存在常数,使得对于定义域内的任意, 恒成立,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,
(1)若函数的两个极值点为,求函数的解析式;
(2)在(1)的条件下,求函数的图象过点的切线方程;
(3)对一切恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形, 为直角三角形, ,且.
(1)证明:平面平面;
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com