【题目】已知函数f(x)=x3+x2+x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.
【答案】见解析
【解析】
解 因为f′(x)=x2+x+= (x+a-2),所以令f′(x)=0,
解得x1=,x2=2-a.
由0<a<1,知1<2-a<2.
所以令f′(x)>0,得x<,或x>2-a;
令f′(x)<0,得<x<2-a,
所以函数f(x)在(1,2-a)上单调递减,在(2-a,2)上单调递增.
所以函数f(x)在[1,2]上的最小值为f(2-a)= (2-a)2,最大值为max{f(1),f(2)}=max.
因为当0<a≤时,-≥a;
当<a<1时,a>-,
由对任意x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,得2f(x)min>f(x)max(x∈[1,2]).
所以当0<a≤时,必有2× (2-a)2>-,
结合0<a≤可解得1-<a≤;
当<a<1时,必有2× (2-a)2>a,
结合<a<1可解得<a<2-.
综上,知所求实数a的取值范围是1-<a<2-.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-3ax-1,a≠0.
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155 到195之间),现将抽取结果按如下方式分成八组:第一组,第二组,…,第八组,并按此分组绘制如图所示的频率分布直方图,其中第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.
(1)补全频率分布直方图;
(2)根据频率分布直方图估计这50位男生身高的中位数;
(3)用分层抽样的方法在身高为内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为.
⑴求椭圆的方程:
⑵已知为椭圆的左端点,问: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com