精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3x2x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.

【答案】见解析

【解析】

因为f′(x)=x2x+ (x+a-2),所以令f′(x)=0,

解得x1,x2=2-a.

由0<a<1,知1<2-a<2.

所以令f′(x)>0,得x<,或x>2-a;

令f′(x)<0,得<x<2-a,

所以函数f(x)在(1,2-a)上单调递减,在(2-a,2)上单调递增.

所以函数f(x)在[1,2]上的最小值为f(2-a)= (2-a)2,最大值为max{f(1),f(2)}=max.

因为当0<a≤时,a;

<a<1时,a>

由对任意x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,得2f(x)min>f(x)max(x∈[1,2]).

所以当0<a≤时,必有2× (2-a)2>

结合0<a≤可解得1-<a≤

<a<1时,必有2× (2-a)2>a,

结合<a<1可解得<a<2-.

综上,知所求实数a的取值范围是1-<a<2-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知垂直于以为直径的圆所在平面,点在线段上,点为圆上一点,且

(Ⅰ) 求证:

(Ⅱ) 求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3ax-1,a≠0.

(1)求f(x)的单调区间;

(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a的值,并求此时函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合

⑴求实数的值;

⑵若,求集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155 到195之间),现将抽取结果按如下方式分成八组:第一组,第二组,…,第八组,并按此分组绘制如图所示的频率分布直方图,其中第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.

(1)补全频率分布直方图;

(2)根据频率分布直方图估计这50位男生身高的中位数;

(3)用分层抽样的方法在身高为内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为

求椭圆的方程:

已知为椭圆的左端点,: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)写出的解析式与定义域

2)画出函数的图像;

3)试讨论方程的根的个数

查看答案和解析>>

同步练习册答案