精英家教网 > 高中数学 > 题目详情
8.设A={x|y=$\sqrt{1-x}$},B={y|y=ln(1+x)},则A∩B=(  )
A.(-1,﹢∞)B.(-∞,1]C.(-1,1]D.

分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出两集合的交集即可.

解答 解:由A中y=$\sqrt{1-x}$,得到1-x≥0,即x≤1,
∴A=(-∞,1],
由B中y=ln(1+x),得到y为任意实数,即y∈R,
∴B=R,
则A∩B=(-∞,1],
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数f(x)(x∈R)关于$(-\frac{3}{4},0)$对称,且$f(x)=-f(x+\frac{3}{2})$则下列结论:(1)f(x)的最小正周期是3,
(2)f(x)是偶函数,(3)f(x) 关于$x=\frac{3}{2}$对称,(4)f(x)关于$(\frac{9}{4},0)$对称,正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程lgx=4-x的根x∈(k,k+1),k∈Z,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l:y-3=k(x+1)必经过定点(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.如果一条直线的两点在一个平面内,那么这条直线在这个平面内
B.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补
C.两条相交直线可以确定一个平面,两条平行直线可以确定一个平面
D.底面是正三角形的三棱锥是正三棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则f($\frac{1}{11}$)+f($\frac{2}{11}$)+…+f($\frac{10}{11}$)的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列给出的各组对象中,不能成为集合的是(  )
A.接近2的所有数B.方程x2-1=0的所有实数根
C.所有的等边三角形D.小于10的所有自然数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某游轮在A处看灯塔B在A的北偏东75°,距离为12$\sqrt{6}$海里,灯塔C在A的北偏西30°,距离为8$\sqrt{3}$海里,游轮由A向正北方向航行到D处时再看灯塔B在南偏东60°则C与D的距离为(  )
A.20海里B.8$\sqrt{3}$海里C.23$\sqrt{2}$海里D.24海里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各组函数表示同一函数的是(  )
A.$f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$B.$f(x)=\sqrt{x^2},g(x)=|x|$
C.f(1)=1,g(x)=x0D.$f(x)=x+1,g(x)=\frac{{{x^2}-1}}{x-1}$

查看答案和解析>>

同步练习册答案