精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆.

(Ⅰ)若的一个焦点为,且点上,求椭圆的方程;

(Ⅱ)已知上有两个动点为坐标原点,且,求线段的最小值(用表示).

【答案】(Ⅰ);(Ⅱ).

【解析】

()由椭圆焦点为,可得,再依据点在椭圆上,列出方程组解出,即可得椭圆方程;

()先求出直线斜率不存在时的长度,然后当直线斜率存在时,设直线方程为,将之与椭圆方程联立,得到韦达定理,结合可得,再利用弦长公式求出,最后对比两种情况下的长度,进而求出最小值.

()因为椭圆焦点为,.

又点,则有,

解得.

椭圆方程为.

()①当直线斜率不存在时,根据对称性可知直线,直线的方程为,

将之代入,可得,

所以.

②当直线斜率存在时,设直线方程为.

联立

,

,可得,

,

,

,

.

综上所述,的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了释放学生压力,某校高三年级一班进行了一个投篮游戏,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置上,甲先投,每人投一次篮,两人有人命中,命中者得分,未命中者得分;两人都命中或都未命中,两人均得.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.

1)经过轮投篮,记甲的得分为,求的分布列及期望;

2)若经过轮投篮,用表示第轮投篮后,甲的累计得分低于乙的累计得分的概率.

①求

②规定,经过计算机模拟计算可得,请根据①中值求出的值,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,设直线过椭圆的上顶点和右焦点,坐标原点到直线的距离为2.

1)求椭圆的方程.

2)过点且斜率不为零的直线交椭圆两点,在轴的正半轴上是否存在定点,使得直线的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面α平面βlACα内不同的两点,BDβ内不同的两点,且ABCD直线lMN分别是线段ABCD的中点.下列判断正确的是(  )

A.ABCD,则MNl

B.MN重合,则ACl

C.ABCD相交,且ACl,则BD可以与l相交

D.ABCD是异面直线,则MN不可能与l平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx

1)讨论函数fx)的单调性;

2)证明:a1时,fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)讨论的单调性,设的最小值为,并求证:

2)若有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是优质产品非优质产品的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有012盒非优质产品粉笔的概率为0.70.20.1.为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.买下所查看的一箱粉笔为事件箱中有件非优质产品为事件.

1)求

2)随机查看该品牌粉笔某一箱中的四盒,设为非优质产品的盒数,求的分布列及期望;

3)若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉笔都是优质产品的箱数的期望比随机购买的箱中每盒粉笔都是优质产品的箱数的期望大10,则所设计的方案有效.讨论该方案是否有效.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为进一步深化“平安校园”创建活动,加强校园安全教育宣传,某高中对该校学生进行了安全教育知识测试(满分100分),并从中随机抽取了200名学生的成绩,经过数据分析得到如图1所示的频数分布表,并绘制了得分在以及的茎叶图,分别如图23所示.

成绩

频数

5

30

40

50

45

20

10

1

1)求这200名同学得分的平均数;(同组数据用区间中点值作代表)

2)如果变量满足,则称变量“近似满足正态分布的概率分布”.经计算知样本方差为210,现在取分别为样本平均数和方差,以样本估计总体,将频率视为概率,如果该校学生的得分“近似满足正态分布的概率分布”,则认为该校的校园安全教育是成功的,否则视为不成功.试判断该校的安全教育是否成功,并说明理由.

3)学校决定对90分及以上的同学进行奖励,为了体现趣味性,采用抽奖的方式进行,其中得分不低于94的同学有两次抽奖机会,低于94的同学只有一次抽奖机会,每次抽奖的奖金及对应的概率分别为:

奖金

50

100

概率

现在从不低于90同学中随机选一名同学,记其获奖金额为,以样本估计总体,将频率视为概率,求的分布列和数学期望.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y24x焦点F的直线l交抛物线于AB两点(点A在第一象限),若3,则直线l的斜率为(

A.2B.C.D.

查看答案和解析>>

同步练习册答案