【题目】给定空间中十个点,其中任意四点不在一个平面上,将某些点之间用线段相连,若得到的图形中没有三角形也没有空间四边形,试确定所连线段数目的最大值.
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.
(1)若,求三棱柱的体积;
(2)证明:平面;
(3)请问当为何值时,平面,试证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线l过点.
(1)若直线l的纵截距和横截距相等,求直线l的方程;
(2)若直线l与两坐标轴围成的三角形的面积为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①若直线与曲线有且只有一个公共点,则直线一定是曲线的切线;
②若直线与曲线相切于点,且直线与曲线除点外再没有其他的公共点,则在点附近,直线不可能穿过曲线;
③若不存在,则曲线在点处就没有切线;
④若曲线在点处有切线,则必存在.
则以上论断正确的个数是( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.
(Ⅰ)从抽取的12人中随机选取3人,记表示成绩优良的人数,求的分布列及数学期望;
(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到人的成绩是优良的可能性最大,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,x R其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(-3,0)内恰有两个零点,求a的取值范围;
(Ⅲ)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记 ,求函数g(t)在区间[-4,-1]上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com