精英家教网 > 高中数学 > 题目详情

【题目】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为,且各轮问题能否正确回答互不影响.

1)求该选手进入第四轮才被淘汰的概率;

2)求该选手至多进入第三轮考核的概率;

3)求该选手回答过四个问题的概率.

【答案】1;(2;(3.

【解析】

1)记该选手能正确回答第i轮的问题为事件为,则求出即可得到答案;

(2)即求

3)即求.

1)记该选手能正确回答第i轮的问题为事件为,则

所以该选手进入第四轮才被淘汰的概率为

.

2)该选手至多进入第三轮考核的概率为

.

3)该选手回答过四个问题,亦即该选手进入了第四轮考核,因此前三轮均回答正确,

故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线交于两点,直线轴交于点,且直线恰好平分.

1)求的值;

2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中7件是一等品,3件是二等品.

1)随机选取1件产品,求能够通过检测的概率;

2)随机选取3件产品,

i)记一等品的件数为,求的分布列;

ii)求这三件产品都不能通过检测的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:

尺寸

38

48

58

68

78

88

质量

16.8

18.8

20.7

22.4

24

25.5

质量与尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

(Ⅰ)现从抽取的6件合格产品中再任选3件,求恰好取到2件优等品的概率;

(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:

75.3

24.6

18.3

101.4

(i)根据所给统计量,求关于的回归方程;

(ii)已知优等品的收益(单位:千元)与的关系,则当优等品的尺寸为为何值时,收益的预报值最大?(精确到0.1)

附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间做AB型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张AB型桌子分别需要1小时和2小时,漆工油漆一张AB型桌子分别需要3小时和1小时;又知木工和漆工每天工作分别不得超过8小时和9小时,设该厂每天做AB型桌子分别为x张和y张.

1)试列出xy满足的关系式,并画出相应的平面区域;

2)若工厂做一张AB型桌子分别获得利润为2千元和3千元,那么怎样安排AB型桌子生产的张数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD∠BAP=90°AB=AC=PA=2EF分别为BCAD的中点,点M在线段PD上.

)求证:EF⊥平面PAC

)若MPD的中点,求证:ME∥平面PAB

)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:

分数段

理科人数

文科人数

(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把物体放在冷空气中冷却,如果物体原来的温度是,空气的温度是,则1min后物体的温度可由公式求得,其中k是常数,把温度是的物体放在15℃的空气中冷却,1 min后,物体的温度是.

1)求出k的值;

2)计算开始冷却多久后,上述物体的温度分别是

3)判断上述物体最终能否冷却到12℃,并说明理由.

查看答案和解析>>

同步练习册答案