精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,函数
(1)求函数f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角, ,c=1,且f(A)=1,求△ABC的面积S.

【答案】
(1)解: = =

=

= =sin(2x﹣ ),

(k∈z),

函数f(x)的单调递增区间为 (k∈z).


(2)解:

因为 ,所以.

又a2=b2+c2﹣2bccosA,则b=2,

从而


【解析】(1)利用向量的数量积的运算,以及两角和二倍角公式化简函数的表达式,通过正弦函数的单调增区间求解即可.(2)利用(1)的结果,推出A的大小,然后利用余弦定理求出b,利用三角形的面积公式求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值,则实数的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:

编号
成绩

1

2

3

4

5

物理(x)

90

85

74

68

63

数学(y)

130

125

110

95

90

(参考公式:b= = b ,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学y成绩关于物理成绩x的线性回归方程 = x+ (b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧棱BB1⊥底面A1B1C1 , D为AC 的中点,A1B1=BB1=2,A1C1=BC1 , ∠A1C1B=60°.
(Ⅰ)求证:AB1∥平面BDC1
(Ⅱ)求多面体A1B1C1DBA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线 ,直线与抛物线交于 两点.

(1)若直线 的斜率之积为,证明:直线过定点;

(2)若线段的中点在曲线 上,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:

单位(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

(1)按照上述数据,求四归直线方程,其中

(2)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P为正方体ABCD﹣A1B1C1D1中AC1与BD1的交点,则△PAC在该正方体各个面上的射影可能是(
A.①②③④
B.①③
C.①④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,中,.

(1)在边上任取一点,求满足的概率;

(2)的内部任作一条射线,与线段交于点,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)和动直线l:y=kx+b(k,b是参变量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)两点,直角坐标系原点为O,记直线OA,OB的斜率分别为kOAkOB= 恒成立,则当k变化时直线l恒经过的定点为(
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

同步练习册答案