精英家教网 > 高中数学 > 题目详情
如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.
因为A、B两点在抛物线y2=2px上,设点A(
y12
2p
,y1),B(
y22
2p
,y2
OA
OB

OA
OB
=
y12
2p
y22
2p
+y1y2=0
y1y2(
y1y2
4p2
+1)=0

∵y1y2≠0,∴
y1y2
4p2
+1=0
y1y2=-4p2…①
∵直线AB的斜率为k=
y1-y2
y12
2p
-
y22
2p
=
2p
y1+y2

∴直线AB的方程为y-y1=
2p
y1+y2
(x-
y12
2p
)

令y=0,得-y1=
2p
y1+y2
(x-
y12
2p
)
-y12-y1y2=2px-y12
∴-y1y2=2px…②
将①代入②,得4p2=2px⇒x=2p
所以直线AB经过x轴上的定点M(2p,0)
∵OD⊥AB,OD的斜率为k1=
0-1
0-2
=
1
2

∴直线AB的斜率为k=
-1
k1
=-2

∴结合D、M的坐标,可得k=
0-1
2p-2
=-2
,解之得p=
5
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点到准线的距离为2,且过点(1,2),则抛物线的方程式为(  )
A.y2=4xB.y2=±4x
C.x2=4y或y2=4xD.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的曲线方程:
(1)经过两点P(-2
3
,1),Q(
3
,-2)
的椭圆的标准方程;
(2)与双曲线
x2
9
-
y2
16
=1
有公共渐近线,且经过点(-3,2
3
)的双曲线的标准方程;
(3)焦点在直线x+3y+15=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,它的准线经过双曲线
x2
a2
-
y2
b2
=1
的左焦点,且与x轴垂直,抛物线与此双曲线交于点(
3
2
6
)
,求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△FAB,点F的坐标为(1,0),点A、B分别在图中抛物线y2=4x及圆(x-1)2+y2=4的实线部分上运动,且AB总是平行于x轴,那么△FAB的周长的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知以向量
v
=(1,
1
2
)
为方向向量的直线l过点(0,
5
4
)
,抛物线C:y2=2px(p>0)的顶点关于直线l的对称点在该抛物线的准线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若
OA
OB
+p2=0
(O为原点,A、B异于原点),试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知实数x、y满足方程(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y=-
1
2
x2
的焦点F到点(a,b)的轨迹上点的距离最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设O为坐标原点,抛物线y2=4x与过焦点的直线交于A、B两点,则
OA
OB
=(  )
A.-
3
4
B.
3
4
C.-3D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线x=
1
8
y2
的准线方程是(  )
A.x=-4B.x=-2C.y=-4D.y=-2

查看答案和解析>>

同步练习册答案