精英家教网 > 高中数学 > 题目详情
13.有限非空数集A满足条件:若a∈A,则$\frac{1}{1-a}$∈A(a≠1).
(1)若2∈A,试写出A中的其他元素;
(2)自己设计一个满足条件的集合A,用列举法表示出来;
(3)从上面的解答中,你能得出什么结论?并说明理由.

分析 (1)根据条件进行递推即可得到A中其他所有元素.
(2)不妨设x=3,求出A中其他所有元素
(3)根据(1)(2)的元素特点得到结论并证明

解答 解:(1)若2∈A,则$\frac{1}{1-2}$=-1∈A,$\frac{1}{1+1}$=$\frac{1}{2}$∈A,$\frac{1}{1-\frac{1}{2}}$=2∈A,
即A中其他所有元素为-1,$\frac{1}{2}$.
(2)若3∈A,则 $\frac{1}{1-3}$=-$\frac{1}{2}$∈A,$\frac{1}{1+\frac{1}{2}}$=$\frac{2}{3}$∈A,$\frac{1}{1-\frac{2}{3}}$=3∈A,
即A中其他所有元素-$\frac{1}{2}$,$\frac{2}{3}$.
(3)A中只有三个元素a,$\frac{1}{1-a}$,$\frac{a-1}{a}$,且三个数的乘积为-1.
证明:a∈A,则$\frac{1}{1-a}$∈A(a≠1且$\frac{1}{1-a}$≠1)
则 $\frac{1}{1-\frac{1}{1-a}}$=$\frac{a-1}{a}$∈A,且$\frac{a-1}{a}$≠1,
进而 $\frac{1}{1-\frac{a-1}{a}}$=a∈A,
∵a≠$\frac{1}{1-a}$(若a=$\frac{1}{1-a}$,即a2-a+1=0,此时方程无解)
∴$\frac{1}{1-a}$≠$\frac{a-1}{a}$,
∴A中只有3个元素a,$\frac{1}{1-a}$,$\frac{a-1}{a}$,且三个数的乘积为-1.

点评 本题主要考查元素和集合的关系,利用条件进行推理并总结规律是解决本题的关键,考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在锐角三角形ABC中,下列结论正确的是(  )
A.sinA>sinBB.cosA>cosBC.sinA>cosBD.cosA>sinB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),ω>0,若f(x)的图象上相邻两个对称中心的距离大于等于π.
(1)求ω的取值范围;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=$\sqrt{3}$,当ω最大时,f(2A)=1,若向量$\overrightarrow{m}$=(1,sinB)与向量$\overrightarrow{n}$=(2,sinC)共线,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=2x与y=2x+1的位置关系是(  )
A.相交但不垂直B.平行C.垂直D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}中,an+2=an+3,且a1=1,a2=2,若bn=$\frac{9}{{(a}_{2n-1}+2){(a}_{2n}+4)}$,则数列{bn}的前n项和Tn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若点P(2,1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程为(  )
A.x+y-3=0B.2x-y-5=0C.2x+y=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.实数x,y满足不等式组$\left\{\begin{array}{l}{3x+5y≤2}\\{x≥1}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最小值3,无最大值B.有最大值12,无最小值
C.有最大值12,最小值3D.既无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象向左平移$\frac{3}{2}$π个单位后与原来的图象重合,且f(x)≤f(π)恒成立,则ω的值(  )
A.等于$\frac{4}{3}$B.等于$\frac{3}{4}$C.等于$\frac{8}{3}$D.有很多种情况

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在四边形ABCD中,$\overrightarrow{AB}$=(4,-2),$\overrightarrow{AC}$=(7,4),$\overrightarrow{AD}$=(3,6),则四边形ABCD的面积为30.

查看答案和解析>>

同步练习册答案