精英家教网 > 高中数学 > 题目详情
已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求m的取值范围.
分析:(1)先设曲线C上任取一个动点P的坐标(x,y),然后根据题意(x,2y)在圆x2+y2=8上,整理即可解出曲线C的方程.
(2)设出直线l的方程,与C的方程联立方程组,整理为一元二次方程,根据根的判别式△>0,化简求出m的范围.
解答:解:(1)在曲线C上任取一个动点P(x,y),
则点(x,2y)在圆x2+y2=8上.
所以有x2+(2y)2=8.
整理得曲线C的方程为
x2
8
+
y2
2
=1

(2)∵直线l平行于OM,且在y轴上的截距为m,
KOM=
1
2

∴直线l的方程为y=
1
2
x+m

y=
1
2
x+m
x2
8
+
y2
2
=1.

得x2+2mx+2m2-4=0
∵直线l与椭圆交于A、B两个不同点,
∴△=(2m)2-4(2m2-4)>0,
解得-2<m<2且m≠0.
∴m的取值范围是-2<m<0或0<m<2.
点评:本题考查直线与圆锥曲线的综合问题,以及椭圆的方程问题.考查对知识的综合运用能力,需要用到一元二次方程的根的判别式.本题属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在点(1,f(1))处的切线方程;
(Ⅱ)若p>0且函f(x)在其定义域内为增函数,求实数p的取值范围;
(Ⅲ)若函数y=f(x)在x∈(0,3)存在极值,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直线y=0,x=a(0<a≤1)和曲线y=x3围成的曲边三角形的平面区域,若向区域Ω上随机投一点P,点P落在区域A内的概率是
1
64
,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)如图,已知曲线C1:y=x2与曲线C2:y=-x2+2ax(a>1)交于点O,A,直线x=t(0<t≤1)与曲线C1,C2分别相交于点D,B,连结OD,DA,AB,OB.
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式S=f(t);
(2)求函数S=f(t)在区间(0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系x o y中,点p( 0,1 )在曲线c:y=x3-x2-ax+b(a,b为实数)上,已知曲c在点p处
的切线方程为y=2x+1,则a+b=
-1
-1

查看答案和解析>>

同步练习册答案