精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有数学公式+数学公式+…+数学公式=an+1成立,求c1+c2+…+c2013的值.

解:(1)由已知得:a2=1+d,a5=1+4d,a14=1+13d…(2分)
∴(1+4d)2=(1+d)(1+13d),
∴3d2-6d=0
∵d>0,∴d=2
∴an=2n-1,b2=a2=3,b3=a5=9,
…(6分)
(2)由得,…(9分)
两式相减得

n=1时,c1=3
∴c1+c2+…+c2013=3+2×3+2×32+…+2×32012=32013…(12分)
分析:(1)利用等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项,可得(1+4d)2=(1+d)(1+13d),求出d,即可求数列{an}与{bn}的通项公式;
(2)再写一式,两式相减,求出数列的通项,即可求数列的和.
点评:本题考查等差数列、等比数列的通项公式,考查数列的求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案