精英家教网 > 高中数学 > 题目详情

【题目】半正多面体亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则其体积为______;若其各个顶点都在同一个球面上,则该球的表面积为______

【答案】

【解析】

将二十四正多面体放入正方体中,结合图形求出该几何体的体积.判断出正方体的中心即球心,由此求得球的半径,进而求得球的表面积.

将二十四正多面体放入正方体中,如下图所示,

由于二十四等边体的棱长为,则正方体的棱长为.

该二十四正四面体是由棱长为的正方体沿各棱中点截去个三棱锥所得,

所以该二十四正四面体的体积为.

由于正方体的中心到正方体各棱中点的距离都为

所以该二十四正四面体外接球的球心为,且半径为,其表面积为.

故答案为:(1). (2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCDA1B1C1D1中,ACBD=OE是线段B1C(含端点)上的一动点,则

OEBD1

OEA1C1D

③三棱锥A1BDE的体积不是定值;

OEA1C1所成的最大角为90°

上述命题中正确的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次

空气质量等级

[0200]

(200400]

(400600]

1(优)

2

16

25

2(良)

5

10

12

3(轻度污染)

6

7

8

4(中度污染)

7

2

0

1)分别估计该市一天的空气质量等级为1234的概率;

2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);

3)若某天的空气质量等级为12,则称这天空气质量好;若某天的空气质量等级为34,则称这天空气质量不好.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

人次≤400

人次>400

空气质量好

空气质量不好

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD为矩形,点EPA线段上,PC平面BDE

1)请确定点E的位置;并说明理由.

2)若是等边三角形,, 平面PAD平面ABCD,四棱锥的体积为,求点E到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,讨论函数的单调性;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由直三棱柱和四棱锥构成的几何体中,,平面平面

(I)求证:

(II)若M为中点,求证:平面

(III)在线段BC上(含端点)是否存在点P,使直线DP与平面所成的角为?若存在,求得值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极值;

2)若函数在区间内存在零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点,两点分别是椭圆的上、下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直线分别相交于两点,点,试问:外接圆是否恒过轴上的定点(异于点)?若是,求该定点坐标;若否,说明理由.

查看答案和解析>>

同步练习册答案