精英家教网 > 高中数学 > 题目详情
形如
ab
cd
的式子叫做二行二列矩阵,定义矩阵的一种运算
ab
cd
x
y
=
ax+bx
cx+dy
.该运算的几何意义为平面上的点(x,y)在矩阵
ab
cd
的作用下变换成点(ax+by,cx+dy).
(1)设点M(-2,1)在
01
10
的作用下变换成点M′,求点M′的坐标;
(2)设数列{an} 的前n项和为Sn ,且对任意正整数n,点A(Sn,n)在
01
10
的作用下变换成的点A′在函数f(x)=x2+x的图象上,求an的表达式;
(3)在(2)的条件下,设bn为数列{1-
1
an
}的前n项的积,是否存在实数a使得不等式bn
an+1
<a
对一切n∈N*都成立?若存在,求a的取值范围;若不存在,请说明理由.
(1)∵
01
10
-2
1
=
1
-2
∴点M′的坐标为(1,-2);
(2)∵
01
10
Sn
n
=
n
Sn
,∴A′(n,Sn
∵点A′(n,Sn)在函数f(x)=x2+x的图象上,∴Sn=n2+n
当n=1时,a1=S1=2
当n≥2时,an=Sn-Sn-1=2n
a1=2满足上式,∴an=2nn∈N*
(3)bn=(1-
1
a1
)(1-
1
a2
)(1-
1
an
)
,设Fn=(1-
1
a1
)(1-
1
a2
)(1-
1
an
)
2n+1

F(n+1)
F(N)
=
2n+1
2n+3
2n+2
<1

∴F(n)>F(n+1),F(n)单调递减.
∴当n=1时,F(n)取最大值
3
2

要使不等式bn
an+1
<a
对一切n∈N*都成立,只需a
3
2

所以a的取值范围为(
3
2
,+∞)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

形如
ab
cd
的式子叫做二行二列矩阵,定义矩阵的一种运算
ab
cd
x
y
=
ax+bx
cx+dy
.该运算的几何意义为平面上的点(x,y)在矩阵
ab
cd
的作用下变换成点(ax+by,cx+dy).
(1)设点M(-2,1)在
01
10
的作用下变换成点M′,求点M′的坐标;
(2)设数列{an} 的前n项和为Sn ,且对任意正整数n,点A(Sn,n)在
01
10
的作用下变换成的点A′在函数f(x)=x2+x的图象上,求an的表达式;
(3)在(2)的条件下,设bn为数列{1-
1
an
}的前n项的积,是否存在实数a使得不等式bn
an+1
<a
对一切n∈N*都成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将形如
.
а11а12
а21а22
.
的符号称二阶行列式,现规定
.
а11а12
а21а22
.
=a11a22-a12a21
试计算二阶行列式
.
cos
π
4
      1
1cos
π
3
.
的值;
(2)已知tan(
π
4
+a)=-
1
2
,求
sin2a-2cos2a
1+tana

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)将形如
.
а11а12
а21а22
.
的符号称二阶行列式,现规定
.
а11а12
а21а22
.
=a11a22-a12a21
试计算二阶行列式
.
cos
π
4
      1
1cos
π
3
.
的值;
(2)已知tan(
π
4
+a)=-
1
2
,求
sin2a-2cos2a
1+tana

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省东莞市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

形如的式子叫做二行二列矩阵,定义矩阵的一种运算 =.该运算的几何意义为平面上的点(x,y)在矩阵的作用下变换成点(ax+by,cx+dy).
(1)设点M(-2,1)在的作用下变换成点M′,求点M′的坐标;
(2)设数列{an} 的前n项和为Sn ,且对任意正整数n,点A(Sn,n)在的作用下变换成的点A′在函数f(x)=x2+x的图象上,求an的表达式;
(3)在(2)的条件下,设bn为数列{1-}的前n项的积,是否存在实数a使得不等式对一切n∈N*都成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案