精英家教网 > 高中数学 > 题目详情

【题目】已知曲线.直线为参数),点的坐标为.

1)写出曲线的参数方程,直线的普通方程;

2)若直线与曲线相交于两点,求的值.

【答案】1为参数);;(2.

【解析】

1)由椭圆的参数方程的求法及椭圆的方程可得的参数方程,消去参数即可得直线的普通方程;

2)法一:将直线的参数方程代入椭圆的普通方程可得关于的一元二次方程,利用韦达定理求出,由可得的符合相同,进而得出,即可求出结果

二:将直线的普通方程与椭圆的普通方程联立求出交点的坐标,进而利用两点间的距离公式求出,进而求得的值.

解:(1)曲线,其参数方程为为参数).

直线为参数),消去参数得:

故直线的普通方程为:.

2法一:将直线的标准的参数方程代入椭圆中,

得:

整理得:

,可得同号,

所以

法二:联立直线与椭圆的方程:

整理得,即

解得:

代入直线的方程可得

∴不妨设

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x22(a2)xa2g(x)=x22(a2)xa28.H1(x)=max{f(x)g(x)}H2(x)=min{f(x)g(x)}(max{pq}表示pq中的较大值,min{pq}表示pq中的较小值).H1(x)的最小值为AH2(x)的最大值为B,则AB=

A.a22a16B.a22a16

C.16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉某商场为促进市民消费,准备每周随机的从十个热门品牌中抽取一个品牌送消费券,并且某个品牌被抽中后不再参与后面的抽奖,没有抽中的品牌则继续参加下周抽奖,假设每次抽取时各品牌被抽到的可能性相同,每次抽取也相互独立.

1)求某品牌到第三次才被抽到的概率;

2)为了使更多品牌参加活动,商场做出调整,从第一周抽取后开始每周会有一个新的品牌补充进抽取队伍,品牌A从第一周就开始参加抽奖,商场准备开展半年(按26周计算)的抽奖活动,记品牌A参与抽奖的次数为X,试求X的数学期望(精确到0.01.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极值;

2)若对于任意实数,当时,函数的最大值为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角系中,点A为曲线C在第一象限的图象上的动点,点EG在曲线C的准线上,且点Gx轴的下方,圆O与准线相切,直线交曲线C于点B,交圆O于点DH.

1)当点H为曲线C的焦点,时,求

2)当点O的内心时,若,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为.为线段上一点,,有下列条件:

;②;③.

请从以上三个条件中任选两个,求的大小和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,过点作抛物线的两切线,切点为.

1)求两切点所在的直线方程;

2)椭圆,离心率为,(1)中直线AB与椭圆交于点PQ,直线的斜率分别为,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案