【题目】已知曲线.直线(为参数),点的坐标为.
(1)写出曲线的参数方程,直线的普通方程;
(2)若直线与曲线相交于、两点,求的值.
【答案】(1)(为参数);;(2).
【解析】
(1)由椭圆的参数方程的求法及椭圆的方程可得的参数方程,消去参数即可得直线的普通方程;
(2)法一:将直线的参数方程代入椭圆的普通方程可得关于的一元二次方程,利用韦达定理求出和,由可得,的符合相同,进而得出,即可求出结果;
法二:将直线的普通方程与椭圆的普通方程联立求出交点的坐标,进而利用两点间的距离公式求出和,进而求得的值.
解:(1)曲线,其参数方程为(为参数).
直线(为参数),消去参数得:,
故直线的普通方程为:.
(2)法一:将直线的标准的参数方程代入椭圆中,
得:,
整理得:,
,,可得,同号,
所以.
法二:联立直线与椭圆的方程:,
整理得,即,
解得:,,
代入直线的方程可得,,
∴不妨设,,
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则AB=( )
A.a22a16B.a2+2a16
C.16D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】武汉某商场为促进市民消费,准备每周随机的从十个热门品牌中抽取一个品牌送消费券,并且某个品牌被抽中后不再参与后面的抽奖,没有抽中的品牌则继续参加下周抽奖,假设每次抽取时各品牌被抽到的可能性相同,每次抽取也相互独立.
(1)求某品牌到第三次才被抽到的概率;
(2)为了使更多品牌参加活动,商场做出调整,从第一周抽取后开始每周会有一个新的品牌补充进抽取队伍,品牌A从第一周就开始参加抽奖,商场准备开展半年(按26周计算)的抽奖活动,记品牌A参与抽奖的次数为X,试求X的数学期望(精确到0.01).
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角系中,点A为曲线C:在第一象限的图象上的动点,点E,G在曲线C的准线上,且点G在x轴的下方,圆O与准线相切,直线交曲线C于点B,交圆O于点D,H.
(1)当点H为曲线C的焦点,时,求;
(2)当点O为的内心时,若,求点A的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,过点作抛物线的两切线,切点为.
(1)求两切点所在的直线方程;
(2)椭圆,离心率为,(1)中直线AB与椭圆交于点P,Q,直线的斜率分别为,,,若,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com