¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÉèx1£¬x2¡ÊR£¬Ôòx1£¾1ÇÒx2£¾1µÄ³äÒªÌõ¼þÊÇx1+x2£¾2ÇÒx1x2£¾1£»
¢ÚÃüÌâ¡°?x¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2¡Ü0¡±£»
¢ÛÈôËæ»ú±äÁ¿¦Î¡«N£¨2£¬¦Ò2£©ÇÒP£¨1¡Ü¦Î¡Ü3£©=0.4£¬ÔòP£¨¦Î¡Ý3£©=0.3£»
¢ÜÒÑÖªn¸öÉ¢µãAi£¨xi£¬yi£©£¬£¨i=1£¬2£¬3£¬¡­£¬n£©µÄÏßÐԻع鷽³ÌΪ
y
=bx+a
£¬Èôa=
.
y
-b
.
x
£¬£¨ÆäÖÐ
.
x
=
1
n
n
i=1
xi
£¬
.
y
=
1
n
n
i=1
yi
£©£¬Ôò´Ë»Ø¹éÖ±Ï߱ؾ­¹ýµã£¨
.
x
£¬
.
y
£©£®ÆäÖÐÕýÈ·ÃüÌâÊÇ
 
£®
·ÖÎö£º¾Ù³ö·´Àý˵Ã÷µÚÒ»¸ö²»ÕýÈ·£¬µÚ¶þ¸öÃüÌâµÄ·ñ¶¨£¬ÓÐÒ»¸ö²»µÈºÅ³ö´í£¬µÚÈý¸öÃüÌâÊÇÕý̬·Ö²¼µÄÌص㣬ÊǶԳÆÐÔ£¬¿ÉÒÔ×ö³ö½á¹ûÕýÈ·£¬µÚËĸöÃüÌâ˵Ã÷»Ø¹éÖ±Ïßͨ¹ýÑù±¾ÖÐÐĵ㣮
½â´ð£º½â£º¢ÙÉèx1£¬x2¡ÊR£¬Ôòx1£¾1ÇÒx2£¾1µÄ³äÒªÌõ¼þÊÇx1+x2£¾2ÇÒx1x2£¾1£»¿ÉÒÔ¾Ù³öÁ½¸öÊý×Ö8ºÍ
1
2
£¬
Âú×ãx1+x2£¾2ÇÒx1x2£¾1£¬µ«²»ÄÜÍƳöx1£¾1ÇÒx2£¾1³ÉÁ¢£¬¹Ê¢Ù²»ÕýÈ·£¬
¢ÚÃüÌâ¡°?x¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2£¼0¡±£»¹Ê¢Ú²»ÕýÈ·£¬
¢ÛÈôËæ»ú±äÁ¿¦Î¡«N£¨2£¬¦Ò2£©ÇÒP£¨1¡Ü¦Î¡Ü3£©=0.4£¬ÔòP£¨¦Î¡Ý3£©=
1
2
£¨1-0.4£©=0.3£»¹Ê¢ÛÕýÈ·£¬
¢ÜÒÑÖªn¸öÉ¢µãAi£¨xi£¬yi£©£¬£¨i=1£¬2£¬3£¬¡­£¬n£©µÄÏßÐԻع鷽³ÌΪ
y
=bx+a
£¬Èôa=
.
y
-b
.
x
£¬£¨ÆäÖÐ
.
x
=
1
n
n
i=1
xi
£¬
.
y
=
1
n
n
i=1
yi
£©£¬Ôò´Ë»Ø¹éÖ±Ï߱ؾ­¹ýµã£¨
.
x
£¬
.
y
£©£¬Õâ˵Ã÷»Ø¹éÖ±ÏßÒ»¶¨¾­¹ýÑù±¾ÖÐÐĵ㣬¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Û¢Ü
µãÆÀ£º±¾Ì⿼²é³äÒªÌõ¼þ£¬¿¼²éÈ«³ÆÃüÌâµÄ·ñ¶¨£¬¿¼²éÕý̬·Ö²¼µÄÐÔÖÊ£¬¿¼²éÏßÐԻعéÖ±Ïßͨ¹ýÑù±¾ÖÐÐĵ㣬ÊÇÒ»¸ö¿¼²é¶à¸ö֪ʶµãµÄÌâÄ¿£¬¿ÉÒÔ°ÑÊÔ¾íÉÏûÓп¼µ½µÄ֪ʶµãÒÔÕâÑùÐÎʽ¿¼²é£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

12¡¢ÒÑÖªa¡¢bÊÇÁ½Ìõ²»ÖغϵÄÖ±Ïߣ¬¦Á¡¢¦Â¡¢¦ÃÊÇÈý¸öÁ½Á½²»ÖغϵÄƽÃ棬¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÈôa¡Í¦Á£¬a¡Í¦Â£¬Ôò¦Á¡Î¦Â£»
¢ÚÈô¦Á¡Í¦Ã£¬¦Â¡Í¦Ã£¬Ôò¦Á¡Î¦Â£»
¢ÛÈô¦Á¡Î¦Â£¬a?¦Á£¬b?¦Â£¬Ôòa¡Îb£»
¢ÜÈô¦Á¡Î¦Â£¬¦Á¡É¦Ã=a£¬¦Â¡É¦Ã=b£¬Ôòa¡Îb£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÓÐ
¢Ù¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ùº¯Êýy=
1
x
µÄµ¥µ÷¼õÇø¼äÊÇ£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©£»
¢Úº¯Êýy=x2-4x+6£¬µ±x¡Ê[1£¬4]ʱ£¬º¯ÊýµÄÖµÓòΪ[3£¬6]£»
¢Ûº¯Êýy=3£¨x-1£©2µÄͼÏó¿ÉÓÉy=3x2µÄͼÏóÏòÓÒƽÒÆ1¸öµ¥Î»µÃµ½£»
¢ÜÈôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[0£¬2]£¬Ôòº¯Êýf£¨2x£©µÄ¶¨ÒåÓòΪ[0£¬1]£»
¢ÝÈôA={s|s=x2+1}£¬B={y|x=
y-1
}
£¬ÔòA¡ÉB=A£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Û¢Ü¢Ý
¢Û¢Ü¢Ý
£®£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«±ß³¤Îª2£¬Èñ½ÇΪ60¡ãµÄÁâÐÎABCDÑؽ϶̶ԽÇÏßBDÕ۳ɶþÃæ½ÇA-BD-C£¬µãE£¬F·Ö±ðΪAC£¬BDµÄÖе㣬¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙEF¡ÎAB£»¢ÚÖ±ÏßEFÊÇÒìÃæÖ±ÏßACÓëBDµÄ¹«´¹Ïߣ»¢Ûµ±¶þÃæ½ÇA-BD-CÊÇÖ±¶þÃæ½Çʱ£¬ACÓëBD¼äµÄ¾àÀëΪ
6
2
£»¢ÜAC´¹Ö±ÓÚ½ØÃæBDE£®
ÆäÖÐÕýÈ·µÄÊÇ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£¨½«ÕýÈ·ÃüÌâµÄÐòºÅÈ«ÌîÉÏ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣬ÆäÖÐÕýÈ·µÄÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÃüÌâ¡°?x0¡ÊR£¬2x0¡Ü0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬2x£¾0¡±£»
¢Úlog2sin
¦Ð
12
+log2cos
¦Ð
12
=-2£»
¢Ûº¯Êýy=tan
x
2
µÄ¶Ô³ÆÖÐÐÄΪ£¨k¦Ð£¬0£©£¬k¡ÊZ£»
¢Ü[cos£¨3-2x£©]¡ä=-2sin£¨3-2x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ùº¯Êýy=ax£¨a£¾0ÇÒa¡Ù1£©Ó뺯Êýy=logaax£¨a£¾0ÇÒa¡Ù1£©µÄ¶¨ÒåÓòÏàͬ£»
¢Úº¯Êýy=x3Óëy=3xµÄÖµÓòÏàͬ£»
¢Ûº¯Êýy=
1
2
+
1
2x-1
Óëy=
(1+2x)2
x•2x
¶¼ÊÇÆ溯Êý£»
¢Üº¯Êýy=£¨x-1£©2Óëy=2x-1ÔÚÇø¼ä[0£¬+¡Þ£©É϶¼ÊÇÔöº¯Êý£¬ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸