精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在整数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,1)上存在极小值,若存在,求出所有整数a的值;若不存在,请说明理由.

分析 (1)问题转化为a>$\frac{{2x}^{3}+8}{{x}^{2}}$=2x+$\frac{8}{{x}^{2}}$,设h(x)=2x+$\frac{8}{{x}^{2}}$,根据函数的单调性求出a的范围即可;
(2)求出函数g(x)的导数,通过讨论a的范围求出函数的单调区间,从而求出a的值即可.

解答 解:(1)由f(x)<0得a>$\frac{{2x}^{3}+8}{{x}^{2}}$=2x+$\frac{8}{{x}^{2}}$,
设h(x)=2x+$\frac{8}{{x}^{2}}$,则h′(x)=2-$\frac{16}{{x}^{3}}$,
∵x∈[1,2],∴h′(x)≤0,则h(x)在[1,2]上是减函数,
∴h(x)max=h(1)=10,∵f(x)<0对?x∈[1,2]恒成立,
即a>2x+$\frac{8}{{x}^{2}}$对?x∈[1,2]恒成立,
∴a>10,则实数a的取值范围为(10,+∞).
(2)∵g(x)=2x3+3ax2-12a2x+3a3
∴g′(x)=6(x-a)(x+2a),
①当a=0时,g′(x)≥0,g(x)单调递增,无极值.
②当a>0时,若x<-2a,或x>a,则g′(x)>0;
若-2a<x<a,则g′(x)<0,
∴当x=a时,g(x)有极小值.
∵g(x)在(0,1)上有极小值,∴0<a<1;
③当a<0时,若x<a或x>-2a,则g′(x)>0;若a<x<-2a,则g′(x)<0,
∴当x=-2a时,g(x)有极小值.∵g(x)在(0,1)上有极小值,
∴0<-2a<1,得-$\frac{1}{2}$<a<0,
由①②③得,不存在整数a,使得函数g(x)在区间(0,1)上存在极小值.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-sin2x+msinx+2,当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时函数有最大值为$\frac{3}{2}$,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用边长为48cm的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.则所做的铁盒容积最大时,在四角截去的小正方形的边长为(  )
A.6 cmB.8 cmC.10 cmD.12 cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为确定加工某零件的时间,某工人做了四次实验,得到的数据的散点图如图所示.
(1)求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$,并在坐标系中画出回归直线;
(2)试预测加工8个零件需要多少时间(精确到十分位).
参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知当-1≤a≤1时,x2+(a-4)x+4-2a>0恒成立,则实数x的取值范围是(-∞,1)∪(3,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-2)ex
(1)求f(x)在[t,t+2]上的最小值h(t);
(2)若存在两个不同的实数α,β,使得f(α)=f(β),求证:α+β<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.({a>1})$,若z=2x+y的最大值为9,则实数a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥平面ABC,AC⊥BC,AC=1,BC=2,S,点D是AB的中点.
(I)证明:AC1∥平面CDB1
(Ⅱ)在线段AB上找一点P,使得直线AC1与CP所成角的为60°,求$\frac{{|{\overrightarrow{AP}}|}}{{|{\overrightarrow{AB}}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x),g(x)都是定义在R上的可导函数,并满足以下条件:
①g(x)≠0
②f(x)=2axg(x)(a>0,a≠1)
③f(x)g′(x)<f′(x)g(x)
若$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=5,则a=2.

查看答案和解析>>

同步练习册答案