【题目】已知双曲线与椭圆有相同焦点,且经过点(4,6).
(1)求双曲线方程;
(2)若双曲线的左,右焦点分别是F1,F2,试问在双曲线上是否存在点P,使得|PF1|=5|PF2|.请说明理由.
【答案】(1);(2)不存在
【解析】
(1)由题得,解方程组即得双曲线方程;(2)假设在双曲线上存在点P,使得|PF1|=5|PF2|,则点P只能在右支上.先求出|PF1|=5,|PF2|=1,分析得到此种情况不存在.
(1)椭圆的焦点在x轴上,且,即焦点为(±4,0),
于是可设双曲线方程为,
则有解得a2=4,b2=12,
故双曲线方程为.
(2)假设在双曲线上存在点P,使得|PF1|=5|PF2|,则点P只能在右支上.由于在双曲线中,由双曲线定义知,|PF1|-5|PF2|=2a=4,于是得|PF1|=5,|PF2|=1.
但当点P在双曲线右支上时,点P到左焦点F1的距离的最小值应为a+c=6,
故不可能有|PF1|=5,即在双曲线上不存在点P,使得|PF1|=5|PF2|
科目:高中数学 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请名同学,每人随机写下一个都小于1的正实数对;再统计两数能与1构成钝角三角形三边的数对的个数;最后再根据统计数来估计的值.假如统计结果是,那么可以估计( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,左、右焦点分别为,点,点在线段的中垂线上.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,直线与的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰三角形PAD所在平面与菱形ABCD所在平面互相垂直,已知点E,F,M,N分别为边BA,BC,AD,AP的中点.
(1)求证:AC⊥PE;
(2)求证:PF∥平面BNM.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一辆汽车从A市出发沿海岸一条笔直公路以的速度向东匀速行驶,汽车开动时,在A市南偏东方向距A市500km且与海岸距离为300km的海上B处有一艘快艇与汽车同时出发,要把一份文件交给这辆汽车的司机.
(1)快艇至少以多大的速度行驶才能把文件送到司机手中?
(2)求快艇以最小速度行驶时的行驶方向与所成角的大小.
(3)若快艇每小时最快行驶,快艇应如何行驶才能尽快把文件交到司机手中?最快需多长时间?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若关于的方程只有一个实数解,求实数的取值范围;
(2)若当时,不等式恒成立,求实数的取值范围;
(3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即,其中a、b、c分别为内角A、B、C的对边.若,,则面积S的最大值为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com