精英家教网 > 高中数学 > 题目详情

【题目】为了纪念五四运动100周年和建团97周年,某校团委开展“青春心向党,建功新时代”知识问答竞赛.在小组赛中,甲3人进行擂台赛,每局2人进行比赛,另1人当裁判,每一局的输方担任下局的裁判,由原来裁判向胜者挑战,甲3人实力相当.

(1)若第1局是由甲担任裁判,求第4局仍是甲担任裁判的概率;

(2)甲3人进行的擂台赛结束后,经统计,甲共参赛了6局,乙共参赛了5局而丙共担任了2局裁判.则甲3人进行的擂台赛共进行了多少局?若从小组赛中,甲丙比赛的所有场次中任取2场,则均是由甲担任裁判的概率是多少.

【答案】(1);(2)9,.

【解析】

1)由题意,前4局当裁判的等可能结果有种,第4局仍是甲当裁判只有2种可能,由古典概型概率的求法即可得解;

2)由题意可得甲与乙之间对局2次,甲与丙之间对局4次,乙与丙之间对局3次,即可求得对局次数;计算出从甲丙比赛的所有场次中任取2场的结果数,再找到符合要求的结果数,利用古典概型概率的求解方法即可得解.

1)记“第4局仍是甲担任裁判”为事件,由于每场比赛有两种等可能结果.

∴前4局当裁判的等可能结果有种,第四局仍是甲当裁判只有2种可能:

第一局甲做裁判,第二局乙做裁判,第三局丙做裁判,第四局甲做裁判;

第一局甲做裁判,第二局丙做裁判,第三局乙做裁判,第四局甲做裁判;

.

2)记“甲丙比赛的所有场次中任取2场,则均是由甲担任裁判”为事件,

∵丙共担任了2局裁判,

∴甲与乙之间对局2次,

∵甲共参赛了6局,乙共参赛了5局,

∴甲与丙之间对局4次,乙与丙之间对局3次,

所以,整个小组赛共有局,

9局比赛中任取2场,共有36种等可能结果,均是由甲担任裁判,即是由乙和丙进行比赛,共有3局,3局比赛中任取2局,共有3种等可能结果,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的列联表:

赞同限行

不赞同限行

合计

没有私家车

90

20

110

有私家车

70

40

110

合计

160

60

220

(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;

(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.

附:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足,价格近似满足

(1)写出该商品的日销售额(单位:元)与时间)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);

(2)求该种商品的日销售额的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若在区间上无零点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且FBE的中点,

求证:(1平面ABC

2平面EDB.

3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与点构成正三角形.

(1)求椭圆的方程;

(2)若过点的直线与椭圆交于不同的两点,试问在轴上是否存在定点,使恒为定值?若存在,求出的坐标,并求出这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念五四运动100周年和建团97周年,某校团委开展“青春心向党,建功新时代”知识问答竞赛.在小组赛中,甲3人进行擂台赛,每局2人进行比赛,另1人当裁判,每一局的输方担任下局的裁判,由原来裁判向胜者挑战,甲3人实力相当.

(1)若第1局是由甲担任裁判,求第4局仍是甲担任裁判的概率;

(2)甲3人进行的擂台赛结束后,经统计,甲共参赛了6局,乙共参赛了5局而丙共担任了2局裁判.则甲3人进行的擂台赛共进行了多少局?若从小组赛中,甲丙比赛的所有场次中任取2场,则均是由甲担任裁判的概率是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45°,距离为10mileC处,并测得渔轮正沿方位角为105°的方向,以mile/h的速度向某小岛靠拢,我海军舰艇立即向方位角为方向,以mile/h的速度前去营救,求舰艇与渔轮相遇时所需的最短时间和

查看答案和解析>>

同步练习册答案