(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
科目:高中数学 来源: 题型:解答题
直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.
(1)求证:BD⊥AB1;
(2)求二面角B—AD—B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。
(1).求证:EA⊥EC;
(2).设平面ECD与半圆弧的另一个交点为F。
①求证:EF//AB;
②若EF=1,求三棱锥E—ADF的体积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com