精英家教网 > 高中数学 > 题目详情
设a,b,c为正实数,求证:
1
a3
+
1
b3
+
1
c3
+abc≥2
3
分析:先根据平均值不等式证明
1
a3
+
1
b3
+
1
c3
+abc≥
3
abc
+abc
,再证  
3
abc
+abc≥2
3
abc
•abc
=2
3
解答:证明:因为a,b,c为正实数,由平均不等式可得
1
a3
+
1
b3
+
1
c3
≥3
3
1
a3
1
b3
1
c3

即  
1
a3
+
1
b3
+
1
c3
3
abc

所以,
1
a3
+
1
b3
+
1
c3
+abc≥
3
abc
+abc

而 
3
abc
+abc≥2
3
abc
•abc
=2
3

所以,
1
a3
+
1
b3
+
1
c3
+abc≥2
3
点评:本题考查平均值不等式的应用,n个正数的算术平均数
a1+a2+…+an
n
  大于或等于它们的几何平均数 
na1a2an
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c为正实数,求证:
1
a3
+
1
b3
+
1
c3
+3abc≥6
,并指出等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c为正实数,且a+b+c=1,则ab2c的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南京模拟)A.选修4-1几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.
求证:ED2=EB•EC.
B.矩阵与变换
已知矩阵A=
2-1
-43
4-1
-31
,求满足AX=B的二阶矩阵X.
C.选修4-4 参数方程与极坐标
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π
3
),它们相交于A,B两点,求线段AB的长.
D.选修4-5 不等式证明选讲设a,b,c为正实数,求证:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南京模拟)设a,b,c为正实数,求证:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

同步练习册答案