精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且与双曲线有相同的焦点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,点满足,点,若直线斜率为,求面积的最大值及此时直线的方程.

【答案】12,直线的方程为

【解析】

(1)有题意有可求解.
(2)先讨论特特殊情况, 是否为原点,然后当的斜率存在时, 设的斜率为,表示出的长度,进一步表示出的面积,然后求最值.

解:(1)由题设知

椭圆的方程为:

2)法一: 的中点

1)当为坐标原点时

的斜率不存在时,此时为短轴的两个端点

的斜率存在时,设的斜率为

,则,代入椭圆方程

整理得:

的距离

解一:令

函数单调递增,单调递减,单调递增

时,的极大值点,也是最大值点

直线方程为

解二:设,则

要得的最大值

时,即时等号成立

,直线方程为

2)当不为原点时,由

三点共线

,设

的斜率为

在椭圆上,

,即

设直线代入椭圆方程,整理得

到直线的距离

上单调递增,在上单调递减

,此时直线

综上所述:,直线的方程为

解二:设的中点,在椭圆上

当直线的斜率不存在时,设

, 所以

,则为短轴上的两个端点

当直线的斜存在时,设

消去

,

下同解法一

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),曲线轴交于两点.以坐标原点为极点,轴正半轴为极轴建立极坐标系.

1)求直线的普通方程及曲线的极坐标方程;

2)若直线与曲线在第一象限交于点,且线段的中点为,点在曲线上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的偶函数,且当x≥0时,fx)=x22x

1)求f0)及ff1))的值;

2)求函数fx)的解析式;

3)若关于x的方程fx)﹣m0有四个不同的实数解,求实数m的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:函数,命题:集合.

1)若命题中有且仅有一个为真命题,求实数的取值范围;

2)设皆为真命题时,的取值范围为集合,已知,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设是以为底的自然对数,.

1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).

2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数奇函数而非偶函数.

1)写出的单调性(不必证明);

2)当时,的取值范围恰为,求的值;

3)设是否存在实数使得函数有零点?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.

(1)求实数的值;

(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案