【题目】在锐角△ABC中,内角A、B、C的对边分别是a、b、c,且2cos2+sin2A=1.
(Ⅰ)求A;
(Ⅱ)设a=2-2,△ABC的面积为2,求b+c的值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为An , 对任意n∈N*满足 ﹣ = ,且a1=1,数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn= + ,数列{cn}的前n项和为Tn , 若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求这个新数列的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点F1(﹣c,0),F2(c,0)分别是椭圆C: (a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线 于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为( )
A.(0,)
B.(0,)
C.( , )
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},则关于x的不等式bx2-ax-2>0的解集为( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
【答案】B
【解析】
利用不等式的解集与方程根的关系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.
∵关于x的不等式ax2+bx+2>0的解集为(﹣1,2),
∴﹣1,2是ax2+bx+2=0(a<0)的两根
∴
∴a=﹣1,b=1
∴不等式bx2﹣ax﹣2>0为x2+x﹣2>0,
∴x<﹣2或x>1
故选:B.
【点睛】
(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式。
(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法.
【题型】单选题
【结束】
6
【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= ( )
A. B. 2 C. 4 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=( )
A.12 B.14 C.16 D.18
【答案】B
【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14.
【题型】单选题
【结束】
9
【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
(I)请完成列联表
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
参考公式和临界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com