精英家教网 > 高中数学 > 题目详情

【题目】在锐角△ABC中,内角A、B、C的对边分别是a、b、c,且2cos2+sin2A=1.
(Ⅰ)求A;
(Ⅱ)设a=2-2,△ABC的面积为2,求b+c的值.

【答案】解:(Ⅰ)在锐角△ABC中,由2cos2+sin2A=1,可得 cos(B+C)+sin2A=0,
即sin2A=cosA,即 2sinAcosA=cosA,求得sinA=,∴A=
(Ⅱ)设a=2-2,△ABC的面积为2,∴bcsinA=2,
∴bc=8.
再利用余弦定理可得a2=16﹣8=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣bc
=(b+c)2﹣16﹣8
∴b+c=4
【解析】(Ⅰ)由条件利用二倍角公式求得sinA= , 可得A的值.
(Ⅱ)由条件利用,△ABC的面积为2求得bc=8,再利用余弦定理求得b+c的值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为An , 对任意n∈N*满足 = ,且a1=1,数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn= + ,数列{cn}的前n项和为Tn , 若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求这个新数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F1(﹣c,0),F2(c,0)分别是椭圆C: (a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线 于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为(  )
A.(0,
B.(0,
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},则关于x的不等式bx2-ax-2>0的解集为(  )

A. {x|-2<x<1} B. {x|x>1或x<-2}

C. {x|x>2或x<-1} D. {x|x<-1或x>1}

【答案】B

【解析】

利用不等式的解集与方程根的关系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.

关于x的不等式ax2+bx+2>0的解集为(﹣1,2),

﹣1,2是ax2+bx+2=0(a<0)的两根

∴a=﹣1,b=1

不等式bx2﹣ax﹣2>0为x2+x﹣2>0,

∴x<﹣2或x>1

故选:B.

【点睛】

(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式。

2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法.

型】单选题
束】
6

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】单选题
束】
9

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

(I)请完成列联表

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?

参考公式和临界值表

,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;

查看答案和解析>>

同步练习册答案