精英家教网 > 高中数学 > 题目详情

【题目】已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范围.

【答案】
(1)解:∵A={x|3≤x<7},∴CRA={x|x<3或x≥7}

∴(CRA)∩B={x|x<3或x≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10}


(2)解:如图,

∴当a>3时,A∩C≠φ


【解析】(1)先求出(RA),再根据交集的含义求(RA)∩B.(2)利用条件A∩C≠,结合数轴,得出距离,进而可求a的取值范围.
【考点精析】通过灵活运用交、并、补集的混合运算,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中,表示同一集合的是(
A.A={0,1},B={(0,1)}
B.A={2,3},B={3,2}
C.A={x|﹣1<x≤1,x∈N},B={1}
D.
E.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光线l1从点M(﹣1,3)射到x轴上,在点P(1,0)处被x轴反射,得到光线l2 , 再经直线x+y﹣4=0反射,得到光线l3 , 求l2和l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的图象如图所示,曲线BCD为抛物线的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2﹣x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“a<﹣2”是“函数f(x)=ax+3在区间[﹣1,2]上存在零点x0”的(
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数 的值域为R;命题q:3x﹣9x<a对一切实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(1,3),圆C:(x﹣m)2+y2= 过点A(1,﹣ ),F点为抛物线y2=2px(p>0)的焦点,直线PF与圆相切.
(1)求m的值与抛物线的方程;
(2)设点B(2,5),点 Q为抛物线上的一个动点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,点M是PD的中点,作ME⊥PC,交PC于点E.

(1)求证:PB∥平面MAC;
(2)求证:PC⊥平面AEM;
(3)求二面角A﹣PC﹣D的大小.

查看答案和解析>>

同步练习册答案