精英家教网 > 高中数学 > 题目详情
若动点与定点和直线的距离相等,则动点的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.直线
D

试题分析:因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直线,且有且只有一个公共点
(ⅰ)证明直线过定点,并求出定点坐标;
(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线上的任意一点到该抛物线焦点的距离比该点到轴的距离多1.

(1)求的值;
(2)如图所示,过定点(2,0)且互相垂直的两条直线分别与该抛物线分别交于四点.
(i)求四边形面积的最小值;
(ii)设线段的中点分别为两点,试问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是抛物线为上的一点,以S为圆心,r为半径()做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴负半轴于点E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点,过点F且与直线相切的动圆圆心为点M,记点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若点A的坐标为,与曲线E相交于B,C两点,直线AB,AC分别交直线于点S,T.试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y=2x2的准线方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线 的焦点,是该抛物线上的两点,,则线段的中点到轴的距离为(  )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线交抛物线两点.若该抛物线上存在点,使得为直角,则的取值范围为________.

查看答案和解析>>

同步练习册答案