精英家教网 > 高中数学 > 题目详情
当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是
 
分析:①构造函数:f(x)=x2+mx+4,x∈[1,2].②讨论 对称轴x=-
m
2
3
2
-
m
2
3
2
时f(x)的单调性,得f(1),f(2)为两部分的最大值若满足f(1),f(2)都小于等于0即能满足x∈(1,2)时f(x)<0,由此则可求出m的取值范围
解答:解:法一:根据题意,构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,不等式x2+mx+4<0恒成立.
则由开口向上的一元二次函数f(x)图象可知f(x)=0必有△>0,
①当图象对称轴x=-
m
2
3
2
时,f(2)为函数最大值当f(2)≤0,得m解集为空集.
②同理当-
m
2
3
2
时,f(1)为函数最大值,当f(1)≤0可使 x∈(1,2)时f(x)<0.
由f(1)≤0解得m≤-5.综合①②得m范围m≤-5
法二:根据题意,构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,不等式x2+mx+4<0恒成立
f(1)≤0
f(2)≤0
解得
m≤-4
m≤-5
即 m≤-5
故答案为 m≤-5
点评:本题考查二次函数图象讨论以及单调性问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在R上可导的函数f(x)=
1
3
x3+
1
2
ax2+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则
b-2
a-1
的取值范围是(  )
A、(
1
4
,1)
B、(
1
2
,1)
C、(-
1
2
1
4
)
D、(
1
4
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-2x+5,
(1)若函数f(x)在(-
2
3
,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在实数a,使得f(x)在(-2,
1
6
)上单调递减,若存在,试求a的取值范围;若不存在,请说明理由;
(3)若a=-
1
2
,当x∈(-1,2)时不等式f(x)<m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a-3)x+a.
(1)对于?x∈R,f(x)>0总成立,求a的取值范围;
(2)当x∈(-1,2)时f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈(1,2)时,不等式x-1<logax恒成立,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案