【题目】已知椭圆的两个焦点为F1(﹣ ,0),F2( ,0),M是椭圆上一点,若 =0,| || |=8.
(1)求椭圆的方程;
(2)点P是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线PA1 , PA2与直线x= 分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.
【答案】
(1)
解:由题意可设椭圆的标准方程为: + =1(a>b>0),
由 =0,∴ ⊥ ,设| |=m,| |=n.又| || |=8.
∴m2+n2= ,m+n=2a,mn=8,a2=b2+5.
解得:a=3,b=2.
∴椭圆的方程为 =1
(2)
解:由(1)得A1(﹣3,0),A2(3,0),设P(x0,y0),则直线PA1的方程为y= (x+3),它与直线x= 的交点的坐标为E ,
直线PA2的方程为:y= (x﹣3),它与直线x= 的交点的坐标为F .
再设以EF为直径的圆交x轴于点Q(m,0),则QE⊥QF,
从而kQEkQF=﹣1,即 × × =﹣ ,
即 =﹣ ,又 =9 .
∴ =1,解得m= ±1.
故以EF为直径的圆交x轴于定点,该定点的坐标为 .
【解析】(1)由题意可设椭圆的标准方程为: + =1(a>b>0),由 =0,可得 ⊥ ,设| |=m,| |=n.又| || |=8.可得m2+n2= ,m+n=2a,mn=8,a2=b2+5.解出即可得出.(2)由(1)得A1(﹣3,0),A2(3,0),设P(x0 , y0),则直线PA1的方程为y= (x+3),它与直线x= 的交点的坐标为E,直线PA2的方程为:y= (x﹣3),它与直线x= 的交点的坐标为F.再设以EF为直径的圆交x轴于点Q(m,0),则QE⊥QF,可得kQEkQF=﹣1,又 =9 .即可得出.
科目:高中数学 来源: 题型:
【题目】已知是数列的前n项和,,且.
(1)求数列的通项公式;
(2)对于正整数,已知成等差数列,求正整数的值;
(3)设数列前n项和是,且满足:对任意的正整数n,都有等式成立.求满足等式的所有正整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某赛季,甲、乙两名篮球运动员都参加了场比赛,比赛得分情况如下(单位:分)
甲:
乙:
(1)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(2)设甲篮球运动员场比赛得分平均值,将场比赛得分依次输入如图所示的程序框图进行运算,问输出的大小为多少?并说明的统计学意义;
(3)如果从甲、乙两位运动员的场得分中,各随机抽取一场不少于分的得分,求甲的得分大于乙的得分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为公差不为0的等差数列,满足a1=5,且a2 , a9 , a30成等比数列.
(1)求{an}的通项公式;
(2)若数列{bn}满足 ﹣ =an(n∈N*),且b1= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某淘宝商城在2017年前7个月的销售额 (单位:万元)的数据如下表,已知与具有较好的线性关系.
(1)求关于的线性回归方程;
(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=( )
A.[﹣2,4)
B.(﹣1,3]
C.[﹣2,﹣1]
D.[﹣1,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点 到点 的距离比它到直线 的距离小 ,记动点 的轨迹为 .若以 为圆心, 为半径( )作圆,分别交 轴于 两点,连结并延长 ,分别交曲线 于 两点.
(1)求曲线 的方程;
(2)求证:直线 的斜率为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com