精英家教网 > 高中数学 > 题目详情
9.直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O为坐标原点,若直线OA、OB的倾斜角分别为α、β,则cosα+cosβ=(  )
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

分析 设A(x1,y1),B(x2,y2),由三角函数的定义得:cosα+cosβ=x1+x2,由此利用韦达定理能求出cosα+cosβ的值.

解答 解:设A(x1,y1),B(x2,y2),
由三角函数的定义得:cosα+cosβ=x1+x2
由$\left\{\begin{array}{l}x+4y=2\\{x^2}+{y^2}=1.\end{array}\right.$,消去y得:17x2-4x-12=0
则${x_1}+{x_2}=\frac{4}{17}$,
即$cosα+cosβ=\frac{4}{17}$.
故选:D.

点评 本题考查两个角的余弦值之和的求法,是基础题,解题时要认真审题,注意韦达定理和三角函数定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦点到渐近线的距离为(  )
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>0,且a≠1,则“函数y=ax在R上是减函数”是“函数y=(2-a)x3在R上是增函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四边形ABCD是边长为2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求证:AC∥平面DEF;
(Ⅲ)求三棱锥C-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设D为△ABC所在平面内一点,且$\overrightarrow{BC}=3\overrightarrow{BD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{5}{3}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(Ⅰ)证明:平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,求CD与平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.阅读如图所示的程序框图,运行相应程序,输出的结果是(  )
A.242B.274C.275D.338

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U=R,集合A={x|x2>1},那么∁UA=(  )
A.[-1,1]B.[1,+∞)C.(-∞,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆C:x2+y2-2x=0,则圆心C 的坐标为(1,0),圆C截直线y=x 的弦长为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案