精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+1)-
kx
x+1
(k为常数)
(1)求f(x)的单调区间;
(2)求证不等式
x
ln(x+1)
-1<
x
2
在x∈(0,1)时恒成立.
分析:(1)求出函数的定义域,求出导函数,令导函数大于0,求出x的范围,通过讨论x的范围与定义域的关系,求出递增区间和递减区间
(2)通过构造函数g(x),利用导函数研究g(x)的单调性,利用函数的单调性,求出函数的最小值,不等式得证.
解答:解:(1)f(x)的定义域为(-1,+∞)(1分)
f'(x)=
1
x+1
-
k
(x+1)2
=
x-(k-1)
(x+1)2
(2分)
令f'(x)>0得:x>k-1
当k-1≤-1即k≤0时,f(x)的单调递增区间是(-1,+∞)(3分)
当k-1>-1即k>0时,f(x)的单调递减区间是(-1,k-1),f(x)的单调递增区间是(k-1,+∞)(5分)
(2)当x∈(0,1)时,原不等式等价于ln(x+1)
x+2
x+1
>2.
令g(x)=ln(x+1)+
x+2
x+1
,g′(x)=
1
x+1
-
1
(x-1)2
=
x
(x+1)2
(7分)
∵x∈(0,1)∴g'(x)>0恒成立
∴g(x)在(0,1)是单调递增(9分)
∴g(x)>g(0)=2
∴g(x)>2在(0,1)上恒成立
故原不等式
x
ln(x+1)
-1<
x
2
在区间(0,1)上恒成立.(12分)
点评:本题考查利用导函数求函数的单调性、利用函数的单调性求函数的最值、通过构造函数证明不等式、分类讨论的数学思想方法在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案