精英家教网 > 高中数学 > 题目详情

已知直线平面,给出下列命题:

①若

②若

③若

④若

其中正确的命题是(   )

A、①③                             B、②④                      C、③④                      D、①④

 

 

【答案】

A

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2000•上海)根据指令(r,θ)(r≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r.
(Ⅰ)现机器人在直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点(4,4).
(Ⅱ)机器人在完成该指令后,发现在点(17,0)处有一小球正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,根据指令(γ,θ)(γ≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转θ),再朝其面对的方向沿直线行走距离γ.

(1)现机器人在平面直角坐标系的坐标原点,且面对x轴正方向.试给机器人下一个指令,使其移动到点(4,4).

(2)机器人在完成该指令后,发现在点(17,0)处有一小球 正向坐标原点作匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果用反三角函数表示).

                              

查看答案和解析>>

科目:高中数学 来源: 题型:

根据指令,机器人在平面上能完成下列动作:先原地旋转角度为正时,按逆时针方向旋转为负时,按顺时针方向旋转-),再朝其面对的方向沿直线行走距离

(Ⅰ)现机器人在直角坐标系的坐标原点,且面对轴正方向,试给机器人下一个指令,使其移动到点(4,4)。

(Ⅱ)机器人在完成该指令后,发现在点(17,0)处有一小球正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位)。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,根据指令(r,θ)(r≥0,-180°≤θ≤180°),机器人在平面上能完成下列动作:

先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转|θ|),再朝其面对的方向沿直线行走距离r.

(1)现机器人在直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点(4,4).

(2)机器人在完成该指令后,发现在点(17,0)处有一个小球正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,根据指令(r,θ)(r≥0,-180°≤θ≤180°),机器人在平面上能完成下列动作:

先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转|θ|),再朝其面对的方向沿直线行走距离r.

(1)现机器人在直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点(4,4).

(2)机器人在完成该指令后,发现在点(17,0)处有一个小球正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令.(结果精确到小数点后两位)

查看答案和解析>>

同步练习册答案