精英家教网 > 高中数学 > 题目详情

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

【答案】216000
【解析】解:设A、B两种产品分别是x件和y件,获利为z元.
由题意,得 ,z=2100x+900y.
不等式组表示的可行域如图:由题意可得 ,解得: ,A(60,100),
目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.
故答案为:216000.

设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x+λ3x(λ∈R)
(1)当λ=﹣4时,求解方程f(x)=3;
(2)根据λ的不同取值,讨论函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长分别为1, ,2 的三角形的最大角与最小角的和是(
A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)在[﹣1,0]上为单调增函数,则(
A.f(sin )<f(cos
B.f(sin1)>f(cos1)
C.f(sin )<f(sin
D.f(sin )>f(tan

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】超市某种绿色食品,过去20个月该食品的月市场需求量(单位: )即每月销售的数据记录如下:

137 108 114 121 115 135 122 140 128 139

125 140 130 125 105 115 133 124 149 115

对这20个数据按组距10进行分组,并统计整理,绘制了如下尚不完整的统计图表:

(Ⅰ)写出 的值.若视分布在各区间内的频率为相应的概率,试计算

(Ⅱ)记组月市场需求量数据的平均数与方差分别为 组月市场需求量数据的平均数与方差分别为 ,试分别比较 的大小;(只需写出结论)

(Ⅲ)为保证该绿色产品的质量,超市规定该产品仅在每月一日上架销售,每月最后一日对所有未售出的产品进行下架处理.若超市每售出该绿色食品可获利润5元,未售出的食品每亏损3元,并且超市为下一个月采购了该绿色食品,求超市下一个月销售该绿色食品的利润的分布列及数学期望.(以分组的区间中点值代表该组的各个值,并以月市场需求量落入该区间的频率作为月市场需求量取该组区间中点值的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R)时,则下列所有正确命题的序号是
①若任意x∈R,则等式f(﹣x)+f(x)=0恒成立;
②存在m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
③任意x1 , x2∈R,若x1≠x2 , 则一定有f(x1)≠f(x2
④存在k∈(1,+∞),使得函数g(x)=f(x)﹣kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}满足:a1=1,a2+a6=14;正项等比数列{bn}满足:b1=2,b3=8.
(Ⅰ) 求数列{an},{bn}的通项公式an , bn
(Ⅱ)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点, 轴的非负半轴为极轴的极坐标系中,曲线.

(1)写出曲线 的普通方程;

(2)过曲线的右焦点作倾斜角为的直线,该直线与曲线相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,则异面直线AB1和BC1所成角的余弦值为(
A.0
B.
C.﹣
D.

查看答案和解析>>

同步练习册答案