精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow a=(x,y)$,若实数x,y满足$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$,则$|{\overrightarrow a}|$的最大值是(  )
A.$\sqrt{73}$B.$\frac{{5\sqrt{2}}}{2}$C.$\sqrt{43}$D.$3\sqrt{2}$

分析 由约束条件作出可行域,由$|{\overrightarrow a}|$的几何意义,即可行域内动点到原点的距离,数形结合得到最优解,联立方程组求得最优解的坐标,代入两点间的距离公式得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$作出可行域如图,

∵$\overrightarrow a=(x,y)$,∴$|\overrightarrow{a}|=\sqrt{{x}^{2}+{y}^{2}}$,
其几何意义为可行域内动点到原点的距离,
由图可知,A到原点距离最大.
联立$\left\{\begin{array}{l}{x=3}\\{x-y+5=0}\end{array}\right.$,解得A(3,8),
∴$|{\overrightarrow a}|$的最大值是$\sqrt{{3}^{2}+{8}^{2}}=\sqrt{73}$.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知实数x、y满足不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{y-4≤0}\end{array}\right.$,则z=2x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sinωx($\sqrt{3}$cosωx+sinωx)(ω>0)的图象两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求ω的值;
(2)求函数f(x)的单凋减区间;
(3)若对任意的x1,x2∈[0,$\frac{π}{2}$],都有,|f(x1)-f(x2)|<m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是定义在R上的奇函数f(x)=x3+(m+1)x2+mx(m为常数).
(1)求f(x)在点M(-2,f(-2))处的切线方程;
(2)求过点P(-1,0)的曲线C的切线方程;
(3)证明:过点N(2,1)可以作曲线f(x)的三条切线;
(4)假设a>0,如果过点(a,b)可以作曲线C的三条切线,证明-a<b<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线C的顶点为原点O,焦点F在x轴正半轴,过焦点且倾斜角为$\frac{π}{4}$的直线l交抛物线于点A,B,若AB=8,则抛物线C的方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ 1-x,(x=0)\\-1,(x<0)\end{array}\right.$,则f[f(0)]=(  )
A.1B.0C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.cos660°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校从6名教师中派3名教师同时去3个边远地区支教,每地1人,其中甲和乙不同去.甲和丙只能同去或同不去则不同的选派方案有42种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在(0,+∞)为增函数的是(  )
A.y=x2-3x+1B.y=-2x+9C.$y={(\frac{1}{2})^x}$D.y=log2x

查看答案和解析>>

同步练习册答案