精英家教网 > 高中数学 > 题目详情

【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?

【答案】解:(Ⅰ) , 所以某员工选择方案甲进行抽奖所获奖金X(元)的分布列为

X

0

500

1000

P

(Ⅱ)由(Ⅰ)可知,选择方案甲进行抽奖所获得奖金X的均值
若选择方案乙进行抽奖中奖次数ξ~B ,则
抽奖所获奖金X的均值E(X)=E(400ξ)=400E(ξ)=480,
故选择方案甲较划算
【解析】(I)利用相互独立事件的概率计算公式即可得出.(II)利用数学期望计算公式、二项分布列的性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双曲线的虚轴长为,两条渐近线方程为.

(1)求双曲线的方程;

(2)双曲线上有两个点,直线的斜率之积为,判别是否为定值,;

(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点的距离)若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED是以BD为直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)在线段EF上是否存在一点P,使得平面PAB与平面ADE所成的锐二面角的余弦值为 .若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六个不同的实数解,则3a+b的取值范围是(
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且满足S4=24,S7=63. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a,b,c,d满足 =1,其中e是自然对数的底数,则(a﹣c)2+(b﹣d)2的最小值为(
A.4
B.8
C.12
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为1(单位:)的正方体木块经过适当切割,得到几何体,已知几何体由两个底面相同的正四棱锥组成,底面平行于正方体的下底面,且各顶点均在正方体的面上,则几何体体积的取值范围是________(单位:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;
(2)若a>0,且关于x的不等式f(x)< x有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案