【题目】已知函数的最大值与最小值之和为a2+a+1(a>1).
(1)求a的值;
(2)判断函数g(x)=f(x)-3在[1,2]的零点的个数,并说明理由.
【答案】(1);(2)一个零点.
【解析】
(1)函数在a>1时单调递增,再根据函数的最大值与最小值之和为a2+a+1.即可得出.
(2)由(1)可得函数f(x)=log2x+2x.可得函数f(x)在[1,2]内单调递增,可得g(x)=f(x)-3在[1,2]内单调递增,最多有一个零点.再利用零点存在的判定定理即可得出.
解:(1)函数在a>1时单调递增,
又函数的最大值与最小值之和为a2+a+1.
∴f(1)+f(2)=0+a+loga2+a2=a2+a+1,解得a=2.
(2)由(1)可得函数f(x)=log2x+2x.
可得函数f(x)在[1,2]内单调递增,
可得g(x)=f(x)-3在[1,2]内单调递增,最多有一个零点.
∵g(1)=f(1)-3=2-3=-1<0,g(2)=f(2)-3=-3=2>0,
可得函数在[1,2]内有且只有一个零点.
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
A. 对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小
B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位
C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
D. 回归直线过样本点的中心(, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N﹣BCM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+1的导数满足,,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设,求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.
(Ⅰ)若,求证:平面PQB平面PAD;
(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2﹣ =1的离心率为en , 且e2=2,求e12+e22+…+en2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com