精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-2$\sqrt{2}$x+tanα只有一个零点.
(1)求tanα的值;
(2)化简求值:$\frac{sin(\frac{π}{2}-α)-2sin(π+α)}{cos(-α)+sin(6π-α)}$.

分析 (1)由已知利用二次函数的性质可得△=8-4tanα=0,即可解得tanα的值.
(2)利用诱导公式,同角三角函数基本关系式的应用即可化简求值.

解答 解:(1)∵函数f(x)=x2-2$\sqrt{2}$x+tanα只有一个零点.
∴△=8-4tanα=0,
∴解得:tanα=2.
(2)$\frac{sin(\frac{π}{2}-α)-2sin(π+α)}{cos(-α)+sin(6π-α)}$=$\frac{cosα+2sinα}{cosα-sinα}$=$\frac{1+2tanα}{1-tanα}$=$\frac{1+4}{1-2}$=-5.

点评 本题主要考查了诱导公式,同角三角函数基本关系式的应用,考查了二次函数的性质,方程的根,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知空间四边形ABCD,连接AC、BD,设M,N分别是BC,CD的中点,则$\overrightarrow{MN}$用$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$表示的结果为$\frac{1}{2}\overrightarrow{AD}$$-\frac{1}{2}\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在梯形ABCD中,AB=3CD=4AE,BC=3BF,DF交EC于点G,若$\overrightarrow{AG}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$,则$\frac{m}{n}$等于(  )
A.$\frac{11}{6}$B.$\frac{3}{2}$C.$\frac{14}{33}$D.$\frac{35}{56}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别是a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,a=5,试求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}是公差为正数的等差数列,a3,a5是方程x2-5x+6=0的两实数根.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{2{a}_{n}{a}_{n+1}}$,记数列{bn}的前n项和为Sn,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=$\sqrt{3}$sinωx-cosωx(ω>0)在区间(-π,π)与至少存在两个极大值点,则ω的取值范围是($\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)是奇函数,当x>0时,f(x)=lnx,则f(-e)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求证:函数f(x)=-2x3-x在R上是单调递减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线y2=2px(p>0)的焦点F且倾斜角为α的直线交抛物线于A、B两点,若S△ADF=4S△BOF,O为坐标原点,则sinα=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案