精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣lnx.
(1)求函数y=f(x)的单调区间;
(2)设g(x)=x﹣t,若函数h(x)=g(x)﹣f(x)在[ ,e]上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.

【答案】
(1)解:函数定义域为(0,+∞)

f′(x)=2x﹣ =

所以函数的单调减区间为(0, )单调增区间为( ,+∞)


(2)解:函数函数h(x)=g(x)﹣f(x)=x﹣t﹣x2+lnx在[ ,e]恰有两个不同的零点,

等价于t=x﹣x2+lnx在[ ,e]恰有两个不同的实数根

令k(x)=x﹣x2+lnx则k′(x)=﹣

当x∈( ,1)时,k′(x)>0,k(x)在( ,1)递增,

当(1,e)时,k′(x)<0,k(x)在(1,e)递减)

故kmax(x)=k(1)=0,k( )= ﹣1,k(e)=﹣e2+e+1,

所以t∈[ ﹣1,﹣e2+e+1]


【解析】(1)求解f′(x)=2x﹣ ,利用不等式得出单调性即可.(2)转化为t=x﹣x2+lnx在[ ,e]恰有两个不同的实数根,构造函数令k(x)=x﹣x2+lnx利用k′(x)=﹣ 求解最值.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学(成绩得分为整数,满分100分)进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在的人数为12人.

(Ⅰ)求此班级人数;

(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.

(i)甲不排在第一位乙不排在最后一位的概率;

(ii)记甲乙二人排在前三位的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:三棱锥中,侧面垂直底面, 是底面最长的边;图1是三棱锥的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥的直观图的一部分,其中点平面内.

Ⅰ)请在图2中将三棱锥的直观图补充完整并指出三棱锥的哪些面是直角三角形;

Ⅱ)设二面角的大小为,求的值;

求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足 <0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四个结论:
直线l经过定点(0,-2);
②若直线l在x轴和y轴上的截距相等,则 =1;
∈[1, 4+3 ]时,直线l的倾斜角q∈[120°,135°];
④当 ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为
其中正确结论的是(填上你认为正确的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取部进行测试,其结果如下:

甲种手机供电时间(小时)

乙种手机供电时间(小时)

(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;

(2)为了进一步研究乙种手机的电池性能,从上述部乙种手机中随机抽取部,记所抽部手机供电时间不小于小时的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.

(1)求椭圆的方程;

(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随机调查了110名学生,得到如下列联表:

总计

喜欢

40

20

60

不喜欢

20

30

50

总计

60

50

110

算得.

附表:

0.050

0.010

0.001

3.841

6.635

10.828

参照附表,得到的正确结论是( )

A. 在犯错误的概率不超过的前提下,认为“喜欢该节目与性别有关”

B. 在犯错误的概率不超过的前提下,认为“喜欢该节目与性别无关”

C. 以上的把握认为“喜欢该节目与性别有关”

D. 以上的把握认为“喜欢该节目与性别无关”

查看答案和解析>>

同步练习册答案