精英家教网 > 高中数学 > 题目详情

已知f(x)=x2+bx+2,x∈R.若函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,则b的取值范围是________.

b≥4或b≤-2
分析:首先这个函数f(x)的图象是一个开口向上的抛物线,也就是说它的值域就是大于等于它的最小值.F(x)=f(f(x))它的图象只能是函数f(x)上的一段,而要这两个函数的值域相同,则函数 F(x)必须要能够取到最小值,这样问题就简单了,就只需要f(x)的最小值小于
解答:由于f(x)=x2+bx+2,x∈R.则当x=时,f(x)min=
又由函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,
则函数 F(x)必须要能够取到最小值,即
得到b≥4或b≤-2
b的取值范围为b≥4或b≤-2.
故答案为b≥4或b≤-2
点评:本题考查函数值域的简单应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案