精英家教网 > 高中数学 > 题目详情

【题目】如图1是某条公共汽车线路收支差额与乘客量的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图23所示.你能根据图象判断下列说法正确的是(

①图2的建议为减少运营成本;②图2的建议可能是提高票价;

③图3的建议为减少运营成本;④图3的建议可能是提高票价.

A.①④B.②④C.①③D.②③

【答案】A

【解析】

根据题意知图象反应了收支差额与乘客量的变化情况,即直线的斜率说明票价问题,的点说明公司的成本情况,再结合图象进行说明.

根据题意和图(2),两条直线平行即票价不变,直线向上平移说明当乘客量为0,收入是0,但是支出的变少了,即说明此建议是降低成本而保持票价不变;

由图(3)看出,当乘客量为0,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持成本不变,

综上可得①④正确,②③错误.

故选.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,DAB的中点.

1)与BC平行的平面PDEAC于点E,判断点EAC上的位置并说明理由如下:

2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为F1F2,该椭圆与y轴正半轴交于点M,且△MF1F2是边长为2的等边三角形.

1)求椭圆的标准方程;

2)过点F2任作一直线交椭圆于AB两点,平面上有一动点P,设直线PAPF2PB的斜率分别为k1kk2,且满足k1+k2=2k,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.

1)若甲乙都以每分钟100的速度从点出发,甲沿运动,乙沿运动,乙比甲迟2分钟出发,求乙出发后的第1分钟末甲乙之间的距离;

2)现有甲、乙、丙三位小朋友分别在点,设,乙丙之间的距离是甲乙之间距离2倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t百万元,可增加销售额约为百万元.

Ⅰ)若该公司将一年的广告费控制在4百万元之内,则应投入多少广告费,才能使该公司由此增加的收益最大?

Ⅱ)现该公司准备共投入5百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费百万元,可增加的销售额约为百万元,请设计一个资金分配方案,使该公司由此增加的收益最大.

(注:收益=销售额-投入,这里除了广告费和技术改造费,不考虑其他的投入)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,为自然对数的底数)的图象在点处的切线与该函数的图象恰好有三个公共点,求实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:(1)若,则;(2)若,则;(3)若,则;(4)若,则,其中正确命题的序号是(

A.1)(2B.2)(3

C.3)(4D.1)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知椭圆的离心率为,点在椭圆上,若圆的一条切线(斜率存在)与椭圆C有两个交点AB,且.

1)求椭圆的标准方程;

2)求圆O的标准方程;

3)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案