精英家教网 > 高中数学 > 题目详情

【题目】如图所示,使电路接通,开关不同的开闭方式有(

A.11种
B.20种
C.21种
D.12种

【答案】C
【解析】解:根据题意,设5个开关依次为1、2、3、4、5,
若电路接通,则开关1、2与3、4、5中至少有1个接通,
对于开关1、2,共有2×2=4种情况,其中全部断开的有1种情况,则其至少有1个接通的有4﹣1=3种情况,
对于开关3、4、5,共有2×2×2=8种情况,其中全部断开的有1种情况,则其至少有1个接通的8﹣1=7种情况,
则电路接通的情况有3×7=21种;
故选C.

设5个开关依次为1、2、3、4、5,由电路知识分析可得电路接通,则开关1、2与3、4、5中至少有1个接通,依次分析开关1、2与3、4、5中至少有1个接通的情况数目,由分步计数原理,计算可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程;

)求函数的单调区间;

)如果,在上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的有 . (填上所有正确命题的序号) ①一质点在直线上以速度v=3t2﹣2t﹣1(m/s)运动,从时刻t=0(s)到t=3(s)时质点运动的路程为15(m);
②若x∈(0,π),则sinx<x;
③若f′(x0)=0,则函数y=f(x)在x=x0取得极值;
④已知函数 ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(1)设点的中点,求证: 平面

(2)线段上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O点为坐标原点,且点A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若 ,求tanθ的值;
(2)若 =1,求sinθcosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且为锐角.

(1)求角的大小;

(2)求函数 ()的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+λcosωx,其图象的一个对称中心到最近的一条对称轴的距离为 ,且在x= 处取得最大值.
(1)求λ的值.
(2)设 在区间 上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广东某市一玩具厂生产一种玩具深受大家喜欢,经市场调查该商品每月的销售量(单位:千件)与销售价格(单位:元/件)满足关系式,其中 为常数已知销售价格为4/件时,每日可售出玩具21千件.

1的值

2假设该厂生产这种玩具的成本、员工工资等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格的值,使该厂每日销售这种玩具所获得的利润最大(保留1位小数)

查看答案和解析>>

同步练习册答案