精英家教网 > 高中数学 > 题目详情
有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点.因为f(x)=x3在2x3-6x2+7=0处的导数值(0,2),所以f(x)=2x3-6x2+7是f′(x)=6x2-12x的极值点.以上推理中(  )
A、大前提错误
B、小前提错误
C、推理形式错误
D、结论正确
考点:进行简单的演绎推理
专题:推理和证明
分析:在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.
解答: 解:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,
因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,
∴大前提错误,
故选A.
点评:本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.′
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆锥的母线长为4,侧面展开图的中心角为
π
2
,那么它的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)在(0,3)上是增函数,函数f(x+3)是偶函数,则(  )
A、f(
1
2
)<f(4)<f(
7
2
)
B、f(
7
2
)<f(4)<f(
1
2
)
C、f(4)<f(
1
2
)<f(
7
2
)
D、f(
1
2
)<f(
7
2
)<f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在定义域内的一个区间[a,b](a<b)上函数值的取值范围恰好是[
a
2
b
2
],则称区间[a,b]是函数f(x)的有关减半压缩区间,若函数f(x)=
x-1
+m存在一个减半压缩区间[a,b](b>a≥1),则实数m的取值范围是(  )
A、(0,
1
2
B、(0,
1
2
]
C、(
1
2
,1]
D、(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-1.
(Ⅰ)用定义证明f(x)是偶函数;
(Ⅱ)用定义证明f(x)在(-∞,0]上是减函数;
(Ⅲ)写出函数y=f(x)当x∈[-1,2]时的最大值与最小值.(不要求步骤)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AD⊥CD,AC⊥BC,AB=4,AD=CD=2,M为线段AB的中点,平面ACD⊥平面ABC.
(1)求证:BC⊥平面ACD;
(2)求二面角D-CM-A的正切值;
(3)求异面直线AC与BD成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长为4、宽为2的矩形ABCD上有一点P,沿折线BCDA由B点(起点)向A点(终点)移动,设P点移动的路程为x,△ABP的面积为y=f(x).
(1)求△ABP的面积y与点P移动路程x的函数关系式y=f(x);
(2)作出函数y=f(x)的图象,并根据图象求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z1=-8+5
3
i,z2=-3,z3=3所对应的点为A、B、C,以A、B、C为顶点的三角形为△ABC
(Ⅰ)求∠B
(Ⅱ)求以B、C为焦点且过点A的双曲线的方程.

查看答案和解析>>

同步练习册答案