精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①没有公共点的两条直线平行;
②互相垂直的两条直线是相交直线;
③既不平行也不相交的直线是异面直线;
④不同在任一平面内的两条直线是异面直线.
其中正确命题是________.(填序号)
③④
没有公共点的两条直线平行或异面,故命题①错;互相垂直的两条直线相交或异面,故命题②错;既不平行也不相交的直线是异面直线,不同在任一平面内的两条直线是异面直线,命题③、④正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知三棱柱ABCA1B1C1,

(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.

(图①)

(图②)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:
 
(1)BF∥HD1
(2)EG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.

求证:M、N、K三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,分别为的中点,.

(1)证明:∥面
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABCA1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,FAB的中点,ACBC=1,AA1=2.

(1)求证:CF∥平面AB1E
(2)求三棱锥CAB1E在底面AB1E上的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

画一个正方体ABCDA1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.
其中真命题的序号是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

同步练习册答案