精英家教网 > 高中数学 > 题目详情

【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.

【答案】(12

【解析】试题分析:(1)由题已知点处的切线方程,可获得两个条件;即:点

再函数的图像上,令点处的导数为切线斜率。可得两个方程,求出的值

2)由(1)已知函数的解析式,可运用导数求出函数的单调区间和最值。即:

为函数的增区间,反之为减区间。最值需求出极值与区间端点值比较而得。

试题解析:(1)因为在点处的切线方程为,所以切线斜率是

,求得,即点

又函数,则

所以依题意得,解得

2)由(1)知,所以

,解得,当;当

所以函数的单调递增区间是,单调递减区间是

,所以当x变化时,fx)和f′x)变化情况如下表:

X

0

0,2

2

2,3

3

f′x


-

0

+

0

fx

4


极小值


1

所以当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是( )

①命题“x0∈R,x+1>3x0的否定是“x∈R,x2+1≤3x”;

②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;

③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;

④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,经过原点的两直线满足,且交圆于不同两点交 于不同两点,记的斜率为

(1)求的取值范围;

(2)若四边形为梯形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量,函数.

I)求单调递减区间;

II)已知分别为内角的对边,为锐角,,且恰是上的最大值,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:

年龄(岁)

7

8

9

10

11

12

13

身高(cm)

121

128

135

141

148

154

160

)求身高关于年龄的线性回归方程;

)利用()中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC60°PAABBCEPC的中点.

(1) 证明:AE⊥平面PCD

(2) PB和平面PAD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PA=PB,O为AB的中点,OD⊥PC.

(1)求证:OC⊥PD;

(2)若PD与平面PAB所成的角为30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①样本方差反映的是所有样本数据与样本平均值的偏离程度;

②某只股票经历了10个跌停(下跌10%)后需再经过10个涨停(上涨10%)就可以回到原来的净值;

③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为

④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从1到800进行编号.已知从497~513这16个数中取得的学生编号是503,则初始在第1小组1~16中随机抽到的学生编号是7.

其中真命题的个数是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

同步练习册答案