精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|x+ |+|x﹣a+1|(a>0是常数).
(Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(3)< ,求a的取值范围.

【答案】解:(Ⅰ)函数f(x)=|x+ |+|x﹣a+1|≥| |=| |
∵a>0,
,当且仅当a=1时取等号.
≥1
故得:函数f(x)=| |≥1,即f(x)≥1;
(Ⅱ)当x=3时,可得f(3)=|3+ |+|3﹣a+1|
∵a>0,
可得:3+ +|4﹣a|
|4﹣a|<
,且
解得:
故得a的取值范围是(2, ).
【解析】(Ⅰ)利用绝对值不等式证明即可.(Ⅱ)将x=3带入,可得f(3)=|3+ |+|3﹣a+1| ,去绝对值,即可得答案.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为 ,则 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a﹣b|=(
A.2
B.4
C.8
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设命题:指数函数上单调递增.命题:函数的定义域为.若“”为假,“为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点分别是Δ的边的中点连接.现将沿折叠至Δ的位置,连接.记平面 与平面 的交线为 ,二面角大小为.

(1)证明:

(2)证明:

(3)求平面与平面 所成锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中,正确命题的个数是( )
①命题“若x=y,则sinx=siny”的逆否命题是真命题;
②已知α,β是不同的平面,m,n是不同的直线,m∥α,n∥β,α⊥β,则m⊥n;
③直线l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要条件是

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.
(Ⅰ)证明:OB⊥EH;
(Ⅱ)若直线BH与平面EFG所成的角的正弦值为 ,求二面角D﹣AC﹣H的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 平面 分别为的中点, 为侧棱上的动点.

)求证:平面平面

)若为线段的中点,求证: 平面

)试判断直线与平面是否能够垂直.若能垂直,求的值,若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:,q:x2+y2>r2(r>0),pq的充分不必要条件,求实数r的取值范围.

查看答案和解析>>

同步练习册答案