精英家教网 > 高中数学 > 题目详情
11.计算:${(\frac{16}{81})^{-0.75}}-lg25-2lg2$=$\frac{11}{8}$.

分析 利用指数与对数的运算性质即可得出.

解答 解:原式=$(\frac{2}{3})^{4×(-\frac{3}{4})}$-lg100
=$(\frac{2}{3})^{-3}$-2
=$\frac{27}{8}$-2
=$\frac{11}{8}$.
故答案为:$\frac{11}{8}$.

点评 本题考查了指数与对数的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|-2≤x≤2},N={x|x-1>0},则M∩N=(  )
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|x≥-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{c^2}{{{x^2}+ax+a}}$,其中a为实数.
(Ⅰ)若f(x)的定义域为R,求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,∠C=90°,CB=CA=3,△ABC所在平面内一点M满足:$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,则$\overrightarrow{MB}$•$\overrightarrow{MC}$=(  )
A.-1B.-3C.3$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从{1,2,3,4,5,6}中任取两个不同的数m,n(m>n),则$\frac{n}{m}$能够约分的概率为$\frac{4}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{\sqrt{3}}}{2}$,原点到过点A(-a,0),B(0,b)
的直线的距离是$\frac{{4\sqrt{5}}}{5}$.
(1)求椭圆C的方程;
(2)设动直线l与两定直线l1:x-2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1>0,S3=S10,则当Sn取最大值时,n的值为(  )
A.6B.7C.6或7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+t\\ y=\sqrt{3}t\end{array}\right.(t为参数)$,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为$ρ=2\sqrt{3}sinθ$.
(1)写出直线l的普通方程及圆C 的直角坐标方程;
(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(-1,0),B(5,6),P(3,4),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,则λ=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案