精英家教网 > 高中数学 > 题目详情
19.若直线ax+by+c=0经过一、三、四象限,则有(  )
A.ab>0,bc>0B.ab>0,bc<0C.ab<0,bc>0D.ab<0,bc<0

分析 根据一次函数所在象限,判断出a、b、c的符号即可.

解答 解:∵直线ax+by+c=0经过一、三、四象限,
∴$\left\{\begin{array}{l}{-\frac{a}{b}>0}\\{-\frac{c}{b}<0}\end{array}\right.$,即ab<0,bc>0,
故选:C.

点评 本题考查了一次函数图象与系数的关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-x2+|x-a|.(a∈R)
(1)当a=1时,求函数最大值.
(2)当a>0时,讨论函数单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga|$\frac{x-1}{x+1}$|(0<a<1).
(1)求函数f(x)的定义域,并判断f(x)在定义域上的奇偶性;
(2)讨论函数f(x)在区间(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦点,且与坐标轴相交的两交点的距离是4,则双曲线的标准方程是$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(2,1),B(-3,2),在x轴上一点P,使|PA|+|PB|最小,则点P的坐标为($\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:log49-log2$\frac{3}{32}$+2${\;}^{lo{g}_{2}3}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{6}$=0)且不垂直于x轴直线l椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$取值范围;
(Ⅲ)若B关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=-x3+ax2-x-1在[0,+∞)上是减函数,则实数a的取值范围是(-$∞,\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.记函数f(x)=ax2+bx+c(a,b,c均为常数,且a≠0).
(1)若a=1,f(b)=f(c)(b≠c),求f(2)的值;
(2)若b=1,c=-a时,函数y=f(x)在区间[1,2]上的最大值为g(a),求g(a).

查看答案和解析>>

同步练习册答案