精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=a\sqrt{x}-\frac{x^2}{e^x}({x>0})$,其中e为自然对数的底数.
(Ⅰ)当a=0时,判断函数y=f(x)极值点的个数;
(Ⅱ)若函数有两个零点x1,x2(x1<x2),设$t=\frac{x_2}{x_1}$,证明:x1+x2随着t的增大而增大.

分析 (Ⅰ)a=0,化简函数的解析式,求出函数的导数,通过令f'(x)=0,求出极值点,判断单调性,然后求解即可.
(Ⅱ)令$f(x)=a\sqrt{x}-\frac{x^2}{e^x}=0$,得到${x^{\frac{3}{2}}}=a{e^x}$,通过函数有两个零点x1,x2(x1<x2)推出${x_2}-{x_1}=\frac{3}{2}ln{x_2}-\frac{3}{2}ln{x_1}=\frac{3}{2}ln\frac{x_2}{x_1}$.设$\frac{x_2}{x_1}=t$,则t>1,且$\left\{\begin{array}{l}{x_2}=t{x_1}\\{x_2}-{x_1}=\frac{3}{2}lnt\end{array}\right.$解得x1,x2,${x_1}+{x_2}=\frac{3}{2}\frac{{({t+1})lnt}}{t-1}$.构造函数$h(x)=\frac{{({x+1})lnx}}{x-1}$,x∈(1,+∞),求出导函数,然后再构造函数,求出导数判断导函数的符号,推出函数的单调性,即可.

解答 解:(Ⅰ)当a=0时,$f(x)=-\frac{x^2}{e^x}(x>0)$,$f'(x)=\frac{{-2x•{e^x}-(-{x^2})•{e^x}}}{{{{({e^x})}^2}}}=\frac{x(x-2)}{e^x}$
令f'(x)=0,则x=2…(2分)
则x∈(0,2),f'(x)<0,y=f(x)单调递减x∈(2,+∞),f'(x)>0,y=f(x)单调递增
所以x=2是函数的一个极小值点,无极大值点.…(4分)
(Ⅱ)令$f(x)=a\sqrt{x}-\frac{x^2}{e^x}=0$,则${x^{\frac{3}{2}}}=a{e^x}$
因为函数有两个零点x1,x2(x1<x2
所以${x}^{\frac{3}{2}}=a{e}^{{x}_{1}}$,${x}^{\frac{3}{2}}=a{e}^{{x}_{2}}$,可得$\frac{3}{2}ln{x_1}=lna+{x_1}$,$\frac{3}{2}ln{x_2}=lna+{x_2}$.
故${x_2}-{x_1}=\frac{3}{2}ln{x_2}-\frac{3}{2}ln{x_1}=\frac{3}{2}ln\frac{x_2}{x_1}$.…(6分)
设$\frac{x_2}{x_1}=t$,则t>1,且$\left\{\begin{array}{l}{x_2}=t{x_1}\\{x_2}-{x_1}=\frac{3}{2}lnt\end{array}\right.$解得${x_1}=\frac{{\frac{3}{2}lnt}}{t-1}$,${x_2}=\frac{{\frac{3}{2}tlnt}}{t-1}$.
所以:${x_1}+{x_2}=\frac{3}{2}\frac{{({t+1})lnt}}{t-1}$.①…(8分)
令$h(x)=\frac{{({x+1})lnx}}{x-1}$,x∈(1,+∞),
则$h'(x)=\frac{{-2lnx+x-\frac{1}{x}}}{{{{({x-1})}^2}}}$.…(10分)
令$u(x)=-2lnx+x-\frac{1}{x}$,得$u'(x)={({\frac{x-1}{x}})^2}$.
当x∈(1,+∞)时,u'(x)>0.因此,u(x)在(1,+∞)上单调递增,
故对于任意的x∈(1,+∞),u(x)>u(1)=0,
由此可得h'(x)>0,故h(x)在(1,+∞)上单调递增.
因此,由①可得x1+x2随着t的增大而增大.…(12分).

点评 本题考查函数的导数的综合应用,构造法的应用,导函数的符号的判断,最值的求法,考查计算能力分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知点P是椭圆$\frac{x^2}{5}$+y2=1上任一点,F为椭圆的右焦点,Q(3,0),且|PQ|=$\sqrt{2}$|PF|,则满足条件的点 P的个数为(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随机抽取某中学高三年级甲,乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图,其中甲,乙两班各有一个数据被污损.
(1)若已知甲班同学身高众数有且仅有一个为179,乙班同学身高的中位数为172,求甲,乙两班污损处的数据;
(2)在(1)的条件下,求甲,乙两班同学身高的平均值;
(3)①若已知甲班同学身高的平均值大于乙班同学身高的平均值,求甲班污损处的数据的值;
②在①的条件下,从乙班这10名同学中随机抽取两名身高高于170cm的同学,求身高为181cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.
(1)求证:$\frac{ED}{BD}.\frac{PB}{PA}=\frac{PD}{PC}$
(2)求∠PCE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知A,B,C,D四点共圆,BA,DC的延长线交于点M,CA,DB的延长线交于点F,连接FM,且FM⊥MD.过点B作FD的垂线,交FM于点E
(Ⅰ)证明:△FAB∽△FDC
(Ⅱ)证明:MA•MB=ME•MF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC的外接圆为⊙O,延长CB至Q,延长QA至P,使得QA成为QC,QB的等比中项.
(Ⅰ)求证:QA为⊙O的切线;
(Ⅱ)若AC恰好为∠BAP的平分线,AB=4,AC=6,求QA的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知在平面直角坐标系xOy中,直线l的参数方程为:$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以Ox为极轴建立极坐标系,圆C的极坐标方程为:ρ=2cosθ,则圆C上的点到直线l距离的最小值为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=f(x)在(0,2)上是增函数,且f(x+2)的图象关于y轴对称,则(  )
A.f($\frac{π}{3}$)<f($\frac{3π}{4}$)<f(π)B.f(π)<f($\frac{π}{3}$)<f($\frac{3π}{4}$)C.f(π)<f($\frac{3π}{4}$)<f($\frac{π}{3}$)D.f($\frac{3π}{4}$)<f($\frac{π}{3}$)<f(π)

查看答案和解析>>

同步练习册答案