精英家教网 > 高中数学 > 题目详情

设M={x|0≤x≤2},N={y|0≤y≤3},给出下列四个图形(如图所示),其中能表示从集合M到集合N的函数关系的图象是


  1. A.
    ①②
  2. B.
    ③④
  3. C.
    ②③
  4. D.
    ①④
C
分析:根据函数的定义,对照各个图象可得:图①中集合M中属于区间(1,2]内的元素没有象,不符合题意;图④中集合M的一个元素对应N中的两个元素,也不符合题意;图②③都满足M中任意一个元素,N中有唯一元素与之对应,符合题意.
解答:由题意知:M={x|0≤x≤2},N={y|0≤y≤3},
对于图①中,在集合M中区间(1,2]内的元素没有象,比如f()的值就不存在,所以图①不符合题意;
对于图②中,对于M中任意一个元素,N中有唯一元素与之对应,符合函数的对应法则,故②正确;
对于图③中,对于M中任意一个元素,N中有唯一元素与之对应,且这种对应是一一对应,故③正确;
对于图④中,集合M的一个元素对应N中的两个元素.比如当x=1时,有两个y值与之对应,不符合函数的定义,故④不正确
故选:C
点评:本题考查的是函数的概念和函数图象的综合类问题.在解答时充分体现了函数概念的知识、函数图象的知识以及问题转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={x|0≤x≤2},N={y|0≤y≤3},给出下列四个图形(如图所示),其中能表示从集合M到集合N的函数关系的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|0≤x<3},N={x|x2-3x-4<0},则集合M∩N等于(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案