精英家教网 > 高中数学 > 题目详情

已知命题p:方程x2+mx+1=0有两个不等的负实根,命题q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,则实数m的取值范围是


  1. A.
    (1,2]∪[3,+∞)
  2. B.
    (1,2)∪(3,+∞)
  3. C.
    (1,2]
  4. D.
    [3,+∞)
A
分析:若p真,,若q真,△=[4(m-2)]2-16<0,由题意可知,p与q一真一假,分类讨论即可.
解答:若p真,则,解得:m>2;
若q真,则△=[4(m-2)]2-16<0,解得:1<m<3;
∵p或q为真,p且q为假,
∴p与q一真一假,
当p真q假,解得m≥3;当p假q真,解得1<m≤2.
综上所述,1<m≤2或m≥3;
故选A.
点评:本题考查复合命题的真假,求得p真,q真的m的范围是关键,突出考查分类讨论思想与化归思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的负实根;q:方程mx2+(m-1)x+m=0无实根.若“p或q”为真,p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“方程x2+
y2m
=1表示焦点在y轴上的椭圆”;命题Q:“方程2x2-4x+m=0没有实数根”.若P∧Q假,P∨Q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2-2mx+m=0没有实数根;
命题Q:?x∈R,x2+mx+1≥0.
(1)写出命题Q的否定“¬Q”;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.
(1)若p为真命题,求m的取值范围;
(2)若q为真命题,求m的取值范围;
(3)若“p或q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案