精英家教网 > 高中数学 > 题目详情
(2013•闵行区二模)设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,则f(2)的最大值为
14
14
分析:通过已知条件求出a、b满足的不等式,求出f(2)的表达式,利用不等式的基本性质求解即可.
解答:解:因为f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,
所以1≤a-b≤2,…①,
2≤a+b≤4,…②,
由②×3+①可得:5≤4a+2b≤14
又f(2)=4a+2b,
所以f(2)的最大值为:14.
故答案为:14.
点评:本题考查不等式的基本性质的应用,也可以利用线性规划解答本题,由于a、b是互相影响与制约的,不可以求出a、b的范围来解答,会使范围扩大,是易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•闵行区二模)方程组
x-2y-5=0
3x+y=8
的增广矩阵为
1-25
318
1-25
318

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知集合M={x|x2<4,x∈R},N={x|log2x>0},则集合M∩N=
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)若Z1=a+2i,Z2=
.
12i
23
.
,且
z1
z2
为实数,则实数a的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)用二分法研究方程x3+3x-1=0的近似解x=x0,借助计算器经过若干次运算得下表:
运算次数 1 4 5 6
解的范围 (0,0.5) (0.3125,0.375) (0.3125,0.34375) (0.3125,0.328125)
若精确到0.1,至少运算n次,则n+x0的值为
5.3
5.3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知
e
1
e
2
是夹角为
π
2
的两个单位向量,向量
a
=
e
1
-2
e
2
b
=k
e
1
+
e
2
,若
a
b
,则实数k的值为
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案