精英家教网 > 高中数学 > 题目详情

【题目】设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为(
A.(
B.(1,
C.( ,2)
D.(0,2)

【答案】A
【解析】解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,
∴0<2A< ,且B+A=3A,
<3A<π.
<A<
<cosA<
∵a=1,B=2A,
∴由正弦定理可得: =b= =2cosA,
<2cosA<
则b的取值范围为( ).
故选A
由题意可得0<2A< ,且 <3A<π,解得A的范围,可得cosA的范围,由正弦定理求得 =b=2cosA,根据cosA的范围确定出b范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个.从袋子中不放回地随机抽取小球两个,每次抽取一个球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记事件表示“”,求事件的概率;

(2)在区间内任取两个实数,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

(1)任取,记“关于的方程有一个大于1的根和一个小于1的根”为事件,求发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上任一点,且点

1)若在圆上,求线段的长及直线的斜率.

2)求的最大值和最小值.

3)若,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N,数列{bn}满足an=4log2bn+3,n∈N.

(1)求an,bn

(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(1)若c=2, ,且△ABC的面积 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为的直线与抛物线相交于AB两点.

(1)用p表示线段AB的长;

(2)若,求这个抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中, 是棱的中点.

)求直线和平面所成角的正弦值.

)在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

同步练习册答案