精英家教网 > 高中数学 > 题目详情
函数y=x2-4x+6,x∈[1,5]的值域是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:求出二次函数的对称轴,研究函数在x∈[1,5]的单调性,解出最值,写出值域即可.
解答: 解:函数y=x2-4x+6的对称轴是x=2,由二次函数的性质知,函数在[1,2]上是减函数,在[2,5]上函数是增函数
又x=2,y=2,
x=1,y=3,
x=5,y=11,
故函数的值域是[2,11],
故答案为:[2,11]
点评:本题考查二次函数在闭区间上的最值,解答本题关键是根据二次函数的性质判断出函数在何处取到最值,二次函数在闭区间上最值在高中数学中应用十分广泛,一些求最值的问题最后往往归结到二次函数的最值上来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:关于x的方程x2+mx+1=0有两个不等的负实数根,q:关于x的方程4x2+4(m-2)x+1=0的两个实根分别在(0,1)和(1,2)内,若(¬p)∧(¬q)是真命题,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(|x-1|+|x-3|-1)
(1)当a=2时,求函数f(x)的最小值;
(2)当函数f(x)的定义域为R时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x-y+1≥0
x+y-1≥0
3x-y-3≤0
,则2x-y的最大值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC中,角A、B、C的对边分别是a、b、c,且acosB-bcosA=
3
5
c,
(1)求
tanA
tanB
的值;
(2)当tan(A-B)取最大值时,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图如图所示,其侧视图是等边三角形,该四棱锥的体积等于(  )
A、
3
B、2
3
C、3
3
D、6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=6sin(ωx+ϕ)(ω>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,若tan∠APB=2,则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,则函数f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=
7
9

(1)求a,c的值;
(2)求sin(A+B)的值.

查看答案和解析>>

同步练习册答案